[TU Graz]

GORILLA: Guiding-center ORbit Integration with Local Linearization Approach[‘Eder’, ‘Bauer’, ‘Forstenlechner’, ‘Graßler’, ‘Kasilov’, ‘Kernbichler’, ‘Meisterhofer’, ‘Scheidt’, ‘Albert’]

ICNTS - Impact of incompressible E×B flow in estimating mono-energetic transport coefficients[‘Beidler’, ‘Isaev’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Murakami’, ‘Nemov’, ‘Spong’, ‘Tribaldos’]

ICNTS - Benchmarking of Momentum Correction Techniques[‘Beidler’, ‘Isaev’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘’, ‘’, ‘’, ‘’, ‘’]

Results From the International Collaboration on Neoclassical Transport in Stellarators (ICNTS)[‘Beidler’, ‘Isaev’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’]

Calculations of confinement of high energy ions for a stellarator type trap[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Moiseenko’, ‘Kalyuzhnyj’, ‘Martitsch’]

Optimization Studies of TJ-II Stellarator[‘Seiwald’, ‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Jimenez’, ‘Tribaldos’]

Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics[‘Rath’, ‘Rügamer’, ‘Bischl’, ‘von Toussaint’, ‘Albert’]

Hamiltonian Theory of Resonant Transport Regimes in Tokamaks with Perturbed Axisymmetry[‘Albert, Christopher’]

Uncertainty quantification in three-dimensional magnetohydrodynamic equilibrium reconstruction via surrogate-assisted Bayesian inference[‘Köberl’, ‘von Toussaint’, ‘Bungartz’, ‘Schilling’, ‘Albert’, ‘Team’]

New Schemes for Confinement of Fusion Products in Stellarators[‘Nührenberg’, ‘Cooper’, ‘Isaev’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Kuyanov’, ‘Mikhailov’, ‘Nemov’, ‘Samitov’, ‘Shafranov’, ‘Skovoroda’, ‘Subbotin’, ‘Zille’, ‘Zvonkov’]

Neoclassical Toroidal Viscosity due to Drift Orbit Resonances[‘Albert’]

Physikalische Rezepte: Mechanik: Schritt für Schritt durch 27 klassische Aufgaben[‘Albert’, ‘Lichtenegger’]

A Bayesian Approach to the Estimation of Parameters and Their Interdependencies in Environmental Modeling[‘Albert’, ‘Callies’, ‘von Toussaint’]

Computation of the Spitzer function in stellarators and tokamaks with finite collisionality: 18th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating[‘Kernbichler’, ‘Kapper’, ‘Kasilov’, ‘Marushchenko’]

Computation of the Spitzer function in a stellarator: Joint 19th ISHW and 16th RFP Workshop[‘Kernbichler’, ‘Kasilov’, ‘Kapper’]

Magnetismus[‘Pottlacher’, ‘Kernbichler’]

Computation of the Spitzer function in stellarators and tokamaks with finite collisionality[‘Kernbichler’, ‘Kapper’, ‘Kasilov’, ‘Marushchenko’]

Hamiltonian approach to non-linear resonant transport regimes in non-axisymmetrically perturbed tokamak plasmas: Fusion@ÖAW - 3. Fusionstag[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kapper’, ‘Kernbichler’, ‘Martitsch’]

Studies of the distribution function computed by NEO-2 using a fully relativistic Coulomb collision model and its application to ECCD in Wendelstein 7-X: 21st International Stellarator-Heliotron Workshop[‘Kernbichler’, ‘Kapper’, ‘Kasilov’, ‘Martitsch’, ‘Marushchenko’]

Kinetic modeling of plasma response to RMPs for a tokamak in full toroidal geometry[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’]

Linear Model of DED Magnetic Field Penetration in TEXTOR Plamsa: International Conference and School on Plasma Physics and Controlled Fusion 2002[‘Eherer’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’]

A reconstruction method for the reconnection rate applied to Cluster magnetotail measurements[‘Penz’, ‘Semenov’, ‘Ivanova’, ‘Ivanov’, ‘Sergeev’, ‘Kubyshkin’, ‘Nakamura’, ‘Heyn’, ‘Biernat’]

Dimensionality reduction using an edge finite element method for periodic magnetostatic fields in a symmetric domain[‘Albert’, ‘Biro’, ‘Heyn’, ‘Kernbichler’, ‘Kasilov’, ‘Lainer’]

Modeling of perturbed 3D equilibria using preconditioned iterations: 21st International Stellarator-Heliotron Workshop[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’, ‘Runov’]

Toroidal torque in resonant transport regimes of tokamak plasmas with perturbed axisymmetry within Hamiltonian theory: 20th International Stellarator-Heliotron Workshop (ISHW)[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Buoyancy and the Penrose process produce jets from rotating black holes[‘Semenov’, ‘Dyadechkin’, ‘Heyn’]

Buoyancy of relativistic magnetic flux tubes and Penrose process produce jets from Kerr black holes[‘Semenov’, ‘Dyadechkin’, ‘Heyn’]

Kelvin-Helmholtz stability of reconnection exhausts in the solar wind[‘Sasunov’, ‘Semenov’, ‘Heyn’, ‘Kubyshkin’, ‘Biernat’]

A statistical and event study of magnetotail dipolarization fronts[‘Schmid’, ‘Volwerk’, ‘Nakamura’, ‘Baumjohann’, ‘Heyn’]

Asymmetric Magnetic Reconnection: Comparison of Results MHD Modelling with the Analytical Solution[‘Sasunov’, ‘Semenov’, ‘Erkaev’, ‘Heyn’, ‘Biernat’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Allmaier’, ‘Ivanov’, ‘Mulec’, ‘Leitner’]

Distribution of parameters of plasma and magnetic field across reconnection layer. Comparison MHD modeling with analytical solution[‘Sasunov’, ‘Erkaev’, ‘Semenov’, ‘Vinnikova’, ‘Heyn’, ‘Biernat’]

Field penetration and Shielding of RMPs: 18th European Fusion Physics Workshop[‘Liang’, ‘Sun’, ‘Yang’, ‘Bertschinger’, ‘Aßmann’, ‘Jaegers’, ‘Koslowski’, ‘Pearson’, ‘Reiser’, ‘Schweer’, ‘Zhang’, ‘Xu’, ‘Wiegmann’, ‘Nardon’, ‘Heyn’]

Simulation of Relativistic Jet Driven by a Spinning Black Hole[‘Heyn’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Leitold’, ‘Allmaier’, ‘Ivanov’, ‘Mulec’, ‘Leitner’]

Comment on “Scaling of asymmetric magnetic reconnection: General theory and collisional simulations” [Phys. Plasmas 14, 102114 (2007)][‘Semenov’, ‘Heyn’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Seiwald’, ‘Leitold’, ‘Allmaier’, ‘Ivanov’, ‘Mulec’, ‘Leitner’]

Model Study of Transition from Impulsive to Steady-State Reconnection: Physics of Auroral Phenomena[‘Posratschnig’, ‘Semenov’, ‘Kubyshkin’, ‘Heyn’]

MODEL STUDY OF TRANSITION FROM IMPULSIVE TO STEADY- STATE RECONNECTION[‘Posratschnig’, ‘Semenov’, ‘Kubyshkin’, ‘Heyn’]

Public Information in European Fusion Research: Methods and Challenges: International Conference on Emerging Nuclear Energy Systems[‘Mlynar’, ‘Kamendje’, ‘Borba’, ‘Antidormi’, ‘Orlando’, ‘Carpenter’, ‘Casci’]

The JET programme in support of ITER[‘Paméla’, ‘Kamendje’]

21st IAEA Fusion Energy Conference summary: progress in experiments on innovative concepts, confinement and performance[‘Paméla’, ‘Kamendje’]

Recent contribution of JET to the ITER physics[‘Romanelli’, ‘Paméla’, ‘Kamendje’, ‘Watkins’, ‘Brezinsek’, ‘Liang’, ‘Litaudon’, ‘Loarer’, ‘Moreau’, ‘Mazon’, ‘Saibene’, ‘Sartori’, ‘de Vries’]

Overview of JET results[‘Romanelli’, ‘Laxåback’, ‘Contributors’]

Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling[‘Voitsekhovitch’, ‘Hatzky’, ‘Coster’, ‘Imbeaux’, ‘McDonald’, ‘Fehér’, ‘Kang’, ‘Leggate’, ‘Martone’, ‘Mochalskyy’, ‘Sáez’, ‘Ribeiro’, ‘Tran’, ‘Gutierrez-Milla’, ‘Aniel’, ‘Figat’, ‘Fleury’, ‘Hoenen’, ‘Hollocombe’, ‘Kaljun’, ‘Manduchi’, ‘Owsiak’, ‘Pais’, ‘Palak’, ‘Plociennik’, ‘Signoret’, ‘Vouland’, ‘Yadykin’, ‘Robin’, ‘Iannone’, ‘Bracco’, ‘David’, ‘Maslennikov’, ‘Noé’, ‘Rossi’, ‘Kamendje’, ‘Heuraux’, ‘Hölzl’, ‘Pinches’, ‘Da Silva’, ‘Tskhakaya’]

Electron cyclotron current drive simulations for finite collisionality plasmas in Wendelstein 7-X using the full linearized collision model[‘Kapper’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’, ‘Heyn’, ‘Marushchenko’, ‘Turkin’]

Effect of 3D magnetic perturbations on the plasma rotation in ASDEX Upgrade[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Kapper’, ‘Albert’, ‘Heyn’, ‘Smith’, ‘Strumberger’, ‘Fietz’, ‘Suttrop’, ‘Landreman’, ‘Team’, ‘Team’]

Modeling of the neoclassical toroidal viscous torque in tokamak plasmas with multiple species: 21st International Stellarator-Heliotron Workshop[‘Martitsch’, ‘Albert’, ‘Kapper’, ‘Kasilov’, ‘Kernbichler’]

Evaluation of relativistic transport coefficients and the generalized Spitzer function in devices with 3D geometry and finite collisionality[‘Kapper’, ‘Kasilov’, ‘Kernbichler’, ‘Aradi’]

Investigation of the Generalized Spitzer Function in Tokamaks and Stellarators: 51st Culham Plasma Physics Summer School[‘Kapper’, ‘Kasilov’, ‘Kernbichler’]

Effect of energy and momentum conservation on fluid resonances for resonant magnetic perturbations in a tokamak[‘Leitner’, ‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

Impact of finite collisionality effects on electron cyclotron current drive in stellarators: 20th International Stellarator-Heliotron Workshop (ISHW)[‘Kapper’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’, ‘Marushchenko’]

Study of collisionless high-energy charged particle losses for stellarators in presence of resonant perturbations of the magnetic field[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Kalyuzhnyj’]

Calculation of the magnetic surface function gradient in stellarators with broken stellarator symmetry[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Seiwald’]

Electron cyclotron current drive in low collisionality limit: On parallel momentum conservation[‘Marushchenko’, ‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Prater’, ‘Harvey’]

Delta-f Monte Carlo computations of parallel conductivity in stellarators: 38th EPS Conference on Plasma Physics[‘Allmaier’, ‘Kasilov’, ‘Kernbichler’]

Benchmarking of the mono-energetic transport coefficients—results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS)[‘Beidler’, ‘Allmaier’, ‘Isaev’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘Maaßberg’, ‘Mikkelsen’, ‘Murakami’, ‘Schmidt’, ‘Spong’, ‘Tribaldos’, ‘Wakasa’]

Plasma response to resonant magnetic field perturbations when modelling Tokamak plasmas: Culham Plasma Physics Summer School 2008[‘Mulec’, ‘Heyn’, ‘Kasilov’]

MHD Stability Analysis for Tokamaks: Third Iter International Summer School 2009[‘Mulec’, ‘Heyn’, ‘Ivanov’, ‘Kasilov’]

Contribution of joint experiments on small tokamaks in the framework of IAEA coordinated research projects to mainstream fusion research[‘GRYAZNEVICH’, ‘STÖCKEL’, ‘OOST’, ‘BOSCO’, ‘SVOBODA’, ‘MELNIKOV’, ‘KAMENDJE’, ‘MALAQUIAS’, ‘MANK’, ‘MIKLASZEWSKI’, ‘CRP’, ‘Teams’]

Sustainment of the Reversed ShearMagnetic Field Configuration with Near-Rational q-min Value with the Help of the Rotating Magnetic Field[‘Kasilov’, ‘Heyn’, ‘Ivanov’, ‘Kernbichler’]

Improvement of collisionless particle confinement in a non-quasi-symmetric stellarator vacuum magnetic field[‘Kasilov’, ‘Kernbichler’, ‘Mikhailov’, ‘Nemov’, ‘Nührenberg’, ‘Zille’]

Geometric integrator for charged particle orbits in axisymmetric fusion devices[‘Kasilov’, ‘Runov’, ‘Kernbichler’]

Modelling of neoclassical toroidal viscosity from internal MHD modes in ASDEX-Upgrade: 46th EPS Conference on Plasma Physics[‘Buchholz’, ‘Gude’, ‘Igochine’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Kinetic aspects of resistive wall modes: 38th EPS Conference on Controlled Fusion and Plasma Physics[‘Mulec’, ‘Ivanov’, ‘Heyn’, ‘Kernbichler’]

Effective ripple in the CHS-qa configuration[‘Nyemov’, ‘Isobe’, ‘Kernbichler’, ‘Kasilov’, ‘Matsuoka’, ‘Okamura’, ‘Shimizu’]

Reconstruction of two-dimensional structures in the magnetopause: Method improvements[‘Hu’]

Reconstruction of the Reconnection Rate from Perturbations in the Ambient Magnetic Field[‘Semenov’, ‘Penz’, ‘Heyn’, ‘Ivanov’, ‘Kubyshkin’, ‘Biernat’, ‘Ivanova’]

Optimization of energy confinement in the 1/ν regime for stellarators[‘Seiwald’, ‘Kasilov’, ‘Kernbichler’, ‘Kalyuzhnyj’, ‘Nemov’, ‘Tribaldos’, ‘Jiménez’]

Parallel Momentum Conservation and Collisionality Effects on ECCD: International Stellarator Workshop[‘Marushchenko’, ‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Rome’, ‘Turkin’]

On ECCD efficiency in toroidal plasmas with finite collisionality: International Stellarator Workshop[‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Nyemov’, ‘Marushchenko’]

Hamiltonian Theory of Resonant Transport Regimes in Tokamaks with Perturbed Axisymmetry[‘Albert’]

Integration of the guiding-center equations in toroidal fields utilizing a local linearization approach: 47th EPS Conference on Plasma Physics, EPS 2021[‘Eder’, ‘Albert’, ‘Kasilov’, ‘Kernbichler’, ‘Scheidt’]

Orbit Classification and Sensitivity Analysis in Dynamical Systems Using Surrogate Models[‘Rath’, ‘Albert’, ‘Bischl’, ‘von Toussaint’]

Surrogate-Enhanced Parameter Inference for Function-Valued Models[‘Albert’, ‘Callies’, ‘Toussaint’]

Alpha particle confinement metrics based on orbit classification in stellarators[‘Albert’, ‘Buchholz’, ‘Kasilov’, ‘Kernbichler’, ‘Rath’]

Computation of neoclassical toroidal viscosity with the account of non-standard orbits in a tokamak: 48th European Physical Society Conference on Plasma Physics[‘Buchholz’, ‘Albert’, ‘Kasilov’, ‘Kernbichler’, ‘Savchenko’, ‘’]

Kinetic modelling of bifurcation conditions of resonant magnetic perturbations in ASDEX Upgrade experiments: 48th European Physical Society Conference on Plasma Physics[‘Markl’, ‘Ulbl’, ‘Albert’, ‘Angioni’, ‘Buchholz’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Suttrop’, ‘’]

On symplectic integration of the guiding-center equations in general 3D toroidal fields using GORILLA: 48th European Physical Society Conference on Plasma Physics[‘Eder’, ‘Albert’, ‘Graßler’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’]

A quasi-continuous exhaust scenario for a fusion reactor: the renaissance of small edge localized modes[‘Harrer’, ‘Faitsch’, ‘Radovanovic’, ‘Wolfrum’, ‘Albert’, ‘Cathey’, ‘Cavedon’, ‘Dunne’, ‘Eich’, ‘Fischer’, ‘Hoelzl’, ‘Labit’, ‘Meyer’, ‘Aumayr’, ‘Team’, ‘Team’]

Quasicontinuous Exhaust Scenario for a Fusion Reactor: The Renaissance of Small Edge Localized Modes[‘Harrer’, ‘Faitsch’, ‘Radovanovic’, ‘Wolfrum’, ‘Albert’, ‘Cathey’, ‘Cavedon’, ‘Dunne’, ‘Eich’, ‘Fischer’, ‘Griener’, ‘Hoelzl’, ‘Labit’, ‘Meyer’, ‘Aumayr’, ‘’, ‘’]

Overview of magnetic structure induced by the TEXTOR-DED and the related transport[‘Abdullaev’, ‘Finken’, ‘Jakubowski’, ‘Kasilov’, ‘Kobayashi’, ‘Reiser’, ‘Reiter’, ‘Runov’, ‘Wolf’]

Reconstruction of the reconnection rate from magnetic field disturbances in an incompressible plasma[‘Semenov’, ‘Penz’, ‘Heyn’, ‘Ivanov’, ‘Kubyshkin’, ‘Biernat’, ‘Ivanova’, ‘Rijnbeek’]

Reconstruction of Nightside Flux Transfer Events Using Cluster Data: Annual Seminar “Physics of Auroral Phenomena”[‘Penz’, ‘Ivanova’, ‘Semenov’, ‘Ivanov’, ‘Sergeev’, ‘Nakamura’, ‘Biernat’, ‘Kubyshkin’, ‘Heyn’]

Theoretical and observational features of magnetic reconnection[‘Biernat’, ‘Semenov’, ‘Penz’, ‘Miklenic’, ‘Veronig’, ‘Hanslmeier’, ‘Vrsnak’, ‘Heyn’, ‘Ivanov’, ‘Ivanova’, ‘Kiehas’, ‘Langmayr’]

Green’s function of compressible Petschek–type magnetic reconnection[‘Penz’, ‘Semenov’, ‘Ivanova’, ‘Heyn’, ‘Biernat’, ‘Ivanov’]

Calculations of the magnetic surface function gradient and associated quantities in stellarators with broken stellarator symmetry: 35th EPS Conference on Plasma Physics[‘Seiwald’, ‘Nyemov’, ‘Kasilov’, ‘Kernbichler’]

Modelling of wave mode conversion in fusion plasmas by the resonant layer method: EPS Conference on Controlled Fusion and Plasma Physics[‘Grekov’, ‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Olshansky’]

Calculations of the magnetic surface function gradient and associated quantities in stellarators with broken stellarator symmetry: EPS Conference on Controlled Fusion and Plasma Physics[‘Nyemov’, ‘Kasilov’, ‘Kernbichler’, ‘Seiwald’]

Calculation of the bootstrap current profile for the TJ-II stellarator[‘Velasco’, ‘Allmaier’, ‘López-Fraguas’, ‘Beidler’, ‘Maassberg’, ‘Kernbichler’, ‘Castejón’, ‘Jiménez’]

Calculations of high energy particle losses for stellarators in real space coordinates: EPS Conference on Controlled Fusion and Plasma Physics[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Kalyuzhnyj’, ‘Allmaier’]

Kinetic linear model of the interaction of helical magnetic perturbations with cylindrical plasmas[‘Ivanov’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’]

Resonant magnetic field perturbations and the quasilinear response of the tokamak plasma: EPS Conference on Controlled Fusion and Plasma Physics[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’]

Quasilinear Response to Resonant Magnetic Field Perturbations in a Tokamak: EPS Conference on Controlled Fusion and Plasma Physics[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’]

Quasilinear response of a tokamak plasma to resonant magnetic field perturbations: 18th International Stellarator/Heliotron Workshop[‘Kernbichler’, ‘Kasilov’, ‘Heyn’, ‘Ivanov’, ‘Leitner’]

Quasilinear Kinetic Modelling of RMP Penetration into a Tokamak Plasma: International Conference-School on Plasma Physics and Controlled Fusion[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’]

On the confinement of passing alpha particles in a tokamak-reactor with resonant magnetic field perturbations shielded by plasma currents[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Loarte’, ‘Nemov’, ‘Runov’]

On the confinement of passing alpha particles in a tokamak-reactor with resonant magnetic field perturbations shielded by plasma currents[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Loarte’, ‘Nemov’, ‘Runov’]

Kinetic versus ideal magnetohydrodynamic modelling of the resistive wall mode in a reversed field pinch plasma[‘Mulec’, ‘Ivanov’, ‘Heyn’, ‘Kernbichler’]

Calculations of collisionless alpha-particle losses for quasi-helically symmetric toroidal stellarators in real space coordinates: EPS Conference on Controlled Fusion and Plasma Physics[‘Nyemov’, ‘Kasilov’, ‘Kernbichler’, ‘Kalyuzhnyj’, ‘Talmadge’, ‘Heyn’]

QUASILINEAR KINETIC MODELLING OF RMP PENETRATION INTO A TOKAMAK PLASMA[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’]

Kinetic modelling of shielding and amplification of RMPs by the tokamak plasma: EPS Conference on Controlled Fusion and Plasma Physics[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’, ‘Nemov’]

Evaluation of non-ambipolar particle fluxes driven by non-resonant magnetic perturbations in a tokamak: Joint 19th ISHW and 16th RFP Workshop[‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Calculations of collisionless high-energy particle losses for heliotron/torsatron devices in real space coordinates: EPS Conference on Controlled Fusion and Plasma Physics[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Kalyuzhnyi’, ‘Heyn’]

Quasilinear modelling of RMP interaction with a tokamak plasma: application to ASDEX Upgrade ELM mitigation experiments[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitner’, ‘Nemov’, ‘Suttrop’, ‘Team’]

Monte-Carlo Simulation von Flugzeitspektren in einem TOF-REMPI[‘Seiwald’]

Kinetic linear model of the interaction of resonant magnetic perturbations with tokamak plasma[‘Heyn’, ‘Ivanov’]

On Magnetic Fields and MHD Equilibria in Stellarators[‘Seiwald’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Kamendje Tchokobou’, ‘Seiwald’, ‘Leitold’, ‘Allmaier’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Kamendje Tchokobou’, ‘Seiwald’, ‘Leitold’, ‘Allmaier’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Kamendje Tchokobou’, ‘Seiwald’, ‘Leitold’, ‘Allmaier’]

Transport and Heating in Toroidal Devices[‘Kernbichler’, ‘Heyn’, ‘Kasilov’, ‘Nyemov’, ‘Kamendje Tchokobou’, ‘Seiwald’, ‘Leitold’, ‘Allmaier’]

The grad B drift velocity of trapped particles in stellarators[‘Nyemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

The ∇B drift velocity of trapped particles in stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

Calculations of an effective ripple for a stellarator magnetic field computed by the {HINT2} code: EPS Conference on Controlled Fusion and Plasma Physics[‘Nyemov’, ‘Kasilov’, ‘Kernbichler’, ‘Seiwald’, ‘Suzuki’, ‘Geiger’]

Evaluation of the Bootstrap Current in Stellarators: 29th European Physical Society Conference on Plasma Physics and Controlled Fusion[‘Kernbichler’, ‘Kasilov’, ‘Nyemov’, ‘Leitold’, ‘Heyn’]

Evaluation of the Bootstrap Current in Stellarators: International Congress on Plasma Physics[‘Kernbichler’, ‘Kasilov’, ‘Nyemov’, ‘Leitold’, ‘Heyn’]

Effective ripple for the W7-X magnetic field calculated by the PIES code: EPS Conference on Controlled Fusion and Plasma Physics[‘Drevlak’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Monticello’, ‘Nyemov’, ‘Nührenberg’, ‘Reiman’]

Calculation of neoclassical transport in stellarators with finite collisionality using integration along magnetic field lines: EPS Conference on Controlled Fusion and Plasma Physics[‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Nyemov’]

Evaluation of the Bootstrap Current in Stellarators: 11th International Congress on Plasma Physics[‘Kernbichler’, ‘Kasilov’, ‘Nyemov’, ‘Leitold’, ‘Heyn’]

Modeling of electron cyclotron current drive for finite collisionality plasmas in Wendelstein 7-X: 31st EPS Conference on Controlled Fusion and Plasma Physics[‘Kapper’, ‘Kernbichler’, ‘Kasilov’, ‘Marushchenko’]

Nonlinear versus quasilinear modeling of ECCD for ITER-relevant parameters[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Pavlenko’, ‘Heyn’, ‘Zohm’]

On the Interaction of a Rotating Magnetic Field with the Plasma in the Kinetic Approximation[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

Neoclassical Toroidal Viscosity in Quasilinear Regimes: 19th Joint EU-US Transport Task Force Meeting[‘Kernbichler’, ‘Kasilov’, ‘Martitsch’]

Modellierung der Plasmarotation in Tokamaks[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Investigation of the plasma rotation in presence of non-axisymmetric magnetic perturbations in a tokamak: 1. Fusionstag[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak[‘Kasilov’, ‘Kernbichler’, ‘Martitsch’, ‘Maassberg’, ‘Heyn’]

Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak: 19th Joint EU-US Transport Task Force Meeting[‘Martitsch’, ‘Kernbichler’, ‘Kasilov’, ‘Heyn’, ‘Maaßberg’]

Evaluation of non-ambipolar particle fluxes driven by external non-resonant magnetic perturbations in a tokamak: EPS Conference on Controlled Fusion and Plasma Physics[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’]

Evaluation of non-ambipolar particle fluxes driven by external non-resonant magnetic perturbations in a tokamak: NAWI Physics Doctoral Seminar[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Collisionless high energy particle losses in optimized stellarators calculated in real-space coordinates[‘Nemov’, ‘Kasilov’, ‘Kernbichler’]

Calculations of confinement of high energy ions for a stellarator type trap DRAKON: EPS Conference on Controlled Fusion and Plasma Physics[‘Nyemov’, ‘Kasilov’, ‘Kernbichler’, ‘Moiseenko’, ‘Agren’, ‘Kalyuzhnyj’, ‘Martitsch’]

Toroidal rotation in resonant regimes of tokamak plasmas due to non-axisymmetric perturbations in the action-angle formalism[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Effect of 3D magnetic perturbations on the plasma rotation in tokamaks: 20th International Stellarator-Heliotron Workshop (ISHW)[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Kapper’, ‘Albert’, ‘Heyn’, ‘Strumberger’, ‘Fietz’, ‘Suttrop’, ‘’]

EUROfusion-theory and advanced simulation coordination (E-TASC): programme and the role of high performance computing[‘Litaudon’, ‘Jenko’, ‘Borba’, ‘Borodin’, ‘Braams’, ‘Brezinsek’, ‘Calvo’, ‘Coelho’, ‘Donné’, ‘Embréus’, ‘Farina’, ‘Görler’, ‘Graves’, ‘Hatzky’, ‘Hillesheim’, ‘Imbeaux’, ‘Kalupin’, ‘Kamendje’, ‘Kim’, ‘Meyer’, ‘Militello’, ‘Nordlund’, ‘Roach’, ‘Robin’, ‘Romanelli’, ‘Schluck’, ‘Serre’, ‘Sonnendrücker’, ‘Strand’, ‘Tamain’, ‘Tskhakaya’, ‘Velasco’, ‘Villard’, ‘Wiesen’, ‘Wilson’, ‘Zonca’]

Evaluation of the neoclassical toroidal viscous torque in ASDEX Upgrade: 31st EPS Conference on Controlled Fusion and Plasma Physics[‘Martitsch’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Strumberger’, ‘Fietz’, ‘Suttrop’, ‘Kirk’, ‘’, ‘’]

Optimization of energy confinement in the $1\nu$ regime for stellarators[’’, ‘’, ‘’, ‘’, ‘’, ‘’, ‘’]

Kinetic modeling of 3D equilibria in a tokamak[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’, ‘Runov’]

A patch transfer function approach for combined computational-experimental analysis of vibro-porous-acoustic problems[‘Rejlek’, ‘Nijman’, ‘Veronesi’, ‘Albert’]

Finite orbit width effects on resonant transport regimes of neoclassical toroidal viscous torque within the Hamiltonian approach[‘Albert’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Quasi-geometric integration of guiding-center orbits in piecewise linear toroidal fields[‘Eder’, ‘Albert’, ‘Bauer’, ‘Kasilov’, ‘Kernbichler’]

Three-dimensional geometric integrator for charged particle orbits in toroidal fusion devices[‘Eder’, ‘Albert’, ‘Bauer’, ‘Kasilov’, ‘Kernbichler’]

Variance reduction in computations of neoclassical transport in stellarators using a δf method[‘Allmaier’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

Variance reduction in computations of neoclassical transport in stellarators using a δf method[‘Allmaier’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘Nemov’, ‘Ga̧sior’, ‘Wołowski’]

Computations of neoclassical transport in stellarators using a δf method with reduced variance[‘Allmaier’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘Nemov’]

Overview of magnetic structure induced by the TEXTOR-DED and the related transport[‘Abdullaev’, ‘Finken’, ‘Jakubowski’, ‘Kasilov’, ‘Kobayashi’, ‘Reiser’, ‘Reiter’, ‘Runov’, ‘Wolf’]

Non-axisymmetric neoclassical transport from mis-alignment of equipotential and magnetic surfaces[‘Markl’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Albert’]

Patch Transfer Function Approach for Analysis of Coupled Vibro-Acoustic Problems Involving Porous Materials[‘Veronesi’, ‘Albert’, ‘Nijman’, ‘Rejlek’, ‘Bocquillet’]

Accelerated methods for direct computation of fusion alpha particle losses within stellarator optimization[‘Albert’, ‘Kasilov’, ‘Kernbichler’]

2D Fourier finite element formulation for magnetostatics in curvilinear coordinates with a symmetry direction[‘Albert’, ‘Lainer’, ‘Bíró’]

Fast Full Wave Simulation of Ultrasonic Pulse-Echo Testing by Iterative Coupling of Analytical and Numerical Methods[‘Albert’, ‘Bauer’, ‘von der Linden’]

Dependence on plasma shape and plasma fueling for small edge-localized mode regimes in TCV and ASDEX Upgrade*[‘Labit’, ‘Eich’, ‘Harrer’, ‘Wolfrum’, ‘Bernert’, ‘Dunne’, ‘Frassinetti’, ‘Hennequin’, ‘Maurizio’, ‘Merle’, ‘Meyer’, ‘Saarelma’, ‘Sheikh’, ‘Adamek’, ‘Agostini’, ‘Aguiam’, ‘Akers’, ‘Albanese’, ‘Albert’, ‘Alessi’, ‘Ambrosino’, ‘Andrèbe’, ‘Angioni’, ‘Apruzzese’, ‘Aradi’, ‘Arnichand’, ‘Auriemma’, ‘Avdeeva’, ‘Ayllon-Guerola’, ‘Bagnato’, ‘Bandaru’, ‘Barnes’, ‘Barrera-Orte’, ‘Bettini’, ‘Bilato’, ‘Biletskyi’, ‘Bilkova’, ‘Bin’, ‘Blanchard’, ‘Blanken’, ‘Bobkov’, ‘Bock’, ‘Boeyaert’, ‘Bogar’, ‘Bogar’, ‘Bohm’, ‘Bolzonella’, ‘Bombarda’, ‘Boncagni’, ‘Bouquey’, ‘Bowman’, ‘Brezinsek’, ‘Brida’, ‘Brunetti’, ‘Bucalossi’, ‘Buchanan’, ‘Buermans’, ‘Bufferand’, ‘Buller’, ‘Buratti’, ‘Burckhart’, ‘Calabrò’, ‘Calacci’, ‘Camenen’, ‘Cannas’, ‘Megías’, ‘Carnevale’, ‘Carpanese’, ‘Carr’, ‘Carralero’, ‘Carraro’, ‘Casolari’, ‘Cathey’, ‘Causa’, ‘Cavedon’, ‘Cecconello’, ‘Ceccuzzi’, ‘Cerovsky’, ‘Chapman’, ‘Chmielewski’, ‘Choi’, ‘Cianfarani’, ‘Ciraolo’, ‘Coda’, ‘Coelho’, ‘Colas’, ‘Colette’, ‘Cordaro’, ‘Cordella’, ‘Costea’, ‘Coster’, ‘Zabala’, ‘Cseh’, ‘Czarnecka’, ‘Cziegler’, ‘D’Arcangelo’, ‘Molin’, ‘David’, ‘Carolis’, ‘Oliveira’, ‘Decker’, ‘Dejarnac’, ‘Delogu’, ‘Harder’, ‘Dimitrova’, ‘Dolizy’, ‘Durán’, ‘Douai’, ‘Drenik’, ‘Dreval’, ‘Dudson’, ‘Dunai’, ‘Duval’, ‘Dux’, ‘Elmore’, ‘Embréus’, ‘Erdõs’, ‘Fable’, ‘Faitsch’, ‘Fanni’, ‘Farnik’, ‘Faust’, ‘Faustin’, ‘Fedorczak’, ‘Felici’, ‘Feng’, ‘Feng’, ‘Ferreira’, ‘Ferrò’, ‘Février’, ‘Ficker’, ‘Figini’, ‘Figueiredo’, ‘Fil’, ‘Fontana’, ‘Francesco’, ‘Fuchs’, ‘Futatani’, ‘Gabellieri’, ‘Gadariya’, ‘Gahle’, ‘Galassi’, ‘Gałązka’, ‘Galdon-Quiroga’, ‘Galeani’, ‘Gallart’, ‘Gallo’, ‘Galperti’, ‘Garavaglia’, ‘Garcia’, ‘Garcia-Lopez’, ‘Garcia-Muñoz’, ‘Garzotti’, ‘Gath’, ‘Geiger’, ‘Giacomelli’, ‘Giannone’, ‘Gibson’, ‘Gil’, ‘Giovannozzi’, ‘Giruzzi’, ‘Gobbin’, ‘Gonzalez-Martin’, ‘Goodman’, ‘Gorini’, ‘Gospodarczyk’, ‘Granucci’, ‘Grekov’, ‘Grenfell’, ‘Griener’, ‘Groth’, ‘Grover’, ‘Gruca’, ‘Gude’, ‘Guimarais’, ‘Gyergyek’, ‘Hacek’, ‘Hakola’, ‘Ham’, ‘Happel’, ‘Harrison’, ‘Havranek’, ‘Hawke’, ‘Henderson’, ‘Hesslow’, ‘Hitzler’, ‘Hnat’, ‘Hobirk’, ‘Hoelzl’, ‘Hogeweij’, ‘Hopf’, ‘Hoppe’, ‘Horacek’, ‘Hron’, ‘Huang’, ‘Iantchenko’, ‘Iglesias’, ‘Igochine’, ‘Innocente’, ‘Ionita-Schrittwieser’, ‘Isliker’, ‘Ivanova-Stanik’, ‘Jacobsen’, ‘Jakubowski’, ‘Janky’, ‘Jardin’, ‘Jaulmes’, ‘Jensen’, ‘Jonsson’, ‘Kallenbach’, ‘Kappatou’, ‘Karpushov’, ‘Kasilov’, ‘Kazakov’, ‘Kazantzidis’, ‘Keeling’, ‘Kelemen’, ‘Kendl’, ‘Kernbichler’, ‘Kirk’, ‘Kocsis’, ‘Komm’, ‘Kong’, ‘Korovin’, ‘Koubiti’, ‘Kovacic’, ‘Krawczyk’, ‘Krieger’, ‘Kripner’, ‘Křivská’, ‘Kudlacek’, ‘Kulyk’, ‘Kurki-Suonio’, ‘Kwiatkowski’, ‘Laggner’, ‘Laguardia’, ‘Lahtinen’, ‘Lang’, ‘Likonen’, ‘Lipschultz’, ‘Liu’, ‘Lombroni’, ‘Lorenzini’, ‘Loschiavo’, ‘Lunt’, ‘Macusova’, ‘Madsen’, ‘Maggiora’, ‘Maljaars’, ‘Manas’, ‘Mantica’, ‘Mantsinen’, ‘Manz’, ‘Maraschek’, ‘Marchenko’, ‘Marchetto’, ‘Mariani’, ‘Marini’, ‘Markovic’, ‘Marrelli’, ‘Martin’, ‘Solís’, ‘Martitsch’, ‘Mastrostefano’, ‘Matos’, ‘Matthews’, ‘Mayoral’, ‘Mazon’, ‘Mazzotta’, ‘Carthy’, ‘McClements’, ‘McDermott’, ‘Mcmillan’, ‘Meineri’, ‘Menkovski’, ‘Meshcheriakov’, ‘Messmer’, ‘Micheletti’, ‘Milanesio’, ‘Militello’, ‘Miron’, ‘Mlynar’, ‘Moiseenko’, ‘Cabrera’, ‘Morales’, ‘Moret’, ‘Moro’, ‘Moulton’, ‘Nabais’, ‘Naulin’, ‘Naydenkova’, ‘Nem’, ‘Nespoli’, ‘Newton’, ‘Nielsen’, ‘Nielsen’, ‘Nikolaeva’, ‘Nocente’, ‘Nowak’, ‘Oberkofler’, ‘Ochoukov’, ‘Ollus’, ‘Olsen’, ‘Omotani’, ‘Ongena’, ‘Orain’, ‘Orsitto’, ‘Paccagnella’, ‘Palha’, ‘Panaccione’, ‘Panek’, ‘Panjan’, ‘Papp’, ‘Perez’, ‘Parra’, ‘Passeri’, ‘Pau’, ‘Pautasso’, ‘Pavlichenko’, ‘Perek’, ‘Radolfini’, ‘Pesamosca’, ‘Peterka’, ‘Petrzilka’, ‘Piergotti’, ‘Pigatto’, ‘Piovesan’, ‘Piron’, ‘Piron’, ‘Plyusnin’, ‘Pokol’, ‘Poli’, ‘Pölöskei’, ‘Popov’, ‘Popovic’, ‘Pór’, ‘Porte’, ‘Pucella’, ‘Puiatti’, ‘Pütterich’, ‘Rabinski’, ‘Rasmussen’, ‘Rasmussen’, ‘Rattá’, ‘Ratynskaia’, ‘Ravensbergen’, ‘Réfy’, ‘Reich’, ‘Reimerdes’, ‘Reimold’, ‘Reiser’, ‘Reux’, ‘Reznik’, ‘Ricci’, ‘Rispoli’, ‘Rivero-Rodriguez’, ‘Rocchi’, ‘Rodriguez-Ramos’, ‘Romano’, ‘Rosato’, ‘Rubinacci’, ‘Rubino’, ‘Ryan’, ‘Salewski’, ‘Salmi’, ‘Samaddar’, ‘Sanchis-Sanchez’, ‘Santos’, ‘Särkimäki’, ‘Sassano’, ‘Sauter’, ‘Scannell’, ‘Scheffer’, ‘Schneider’, ‘Schneider’, ‘Schrittwieser’, ‘Schubert’, ‘Seidl’, ‘Seliunin’, ‘Sharapov’, ‘Sheeba’, ‘Sias’, ‘Sieglin’, ‘Silva’, ‘Sipilä’, ‘Smith’, ‘Snicker’, ‘Solano’, ‘Hansen’, ‘Soria-Hoyo’, ‘Sorokovoy’, ‘Sozzi’, ‘Sperduti’, ‘Spizzo’, ‘Spolaore’, ‘Stejner’, ‘Stipani’, ‘Stober’, ‘Strand’, ‘Sun’, ‘Suttrop’, ‘Sytnykov’, ‘Szepesi’, ‘Tál’, ‘Tala’, ‘Tardini’, ‘Tardocchi’, ‘Teplukhina’, ‘Terranova’, ‘Testa’, ‘Theiler’, ‘Thorén’, ‘Thornton’, ‘Tilia’, ‘Tolias’, ‘Tomes’, ‘Toscano-Jimenez’, ‘Tsironis’, ‘Tsui’, ‘Tudisco’, ‘Urban’, ‘Valisa’, ‘Vallar’, ‘Olivares’, ‘Valovic’, ‘Vugt’, ‘Vanovac’, ‘Varje’, ‘Varju’, ‘Varoutis’, ‘Vartanian’, ‘Vasilovici’, ‘Vega’, ‘Verdoolaege’, ‘Verhaegh’, ‘Vermare’, ‘Vianello’, ‘Vicente’, ‘Viezzer’, ‘Villone’, ‘Voitsekhovitch’, ‘Voltolina’, ‘Vondracek’, ‘Vu’, ‘Walkden’, ‘Wauters’, ‘Weiland’, ‘Weinzettl’, ‘Wensing’, ‘Wiesen’, ‘Wiesenberger’, ‘Wilkie’, ‘Willensdorfer’, ‘Wischmeier’, ‘Wu’, ‘Xiang’, ‘Zagorski’, ‘Zaloga’, ‘Zanca’, ‘Zaplotnik’, ‘Zebrowski’, ‘Zhang’, ‘Zisis’, ‘Zoletnik’, ‘Zuin’]

Overview of physics studies on ASDEX Upgrade[‘Meyer’, ‘Aguiam’, ‘Angioni’, ‘Albert’, ‘Arden’, ‘Parra’, ‘Asunta’, ‘Baar’, ‘Balden’, ‘Bandaru’, ‘Behler’, ‘Bergmann’, ‘Bernardo’, ‘Bernert’, ‘Biancalani’, ‘Bilato’, ‘Birkenmeier’, ‘Blanken’, ‘Bobkov’, ‘Bock’, ‘Bolzonella’, ‘Bortolon’, ‘Böswirth’, ‘Bottereau’, ‘Bottino’, ‘Brand’, ‘Brezinsek’, ‘Brida’, ‘Brochard’, ‘Bruhn’, ‘Buchanan’, ‘Buhler’, ‘Burckhart’, ‘Camenen’, ‘Carlton’, ‘Carr’, ‘Carralero’, ‘Castaldo’, ‘Cavedon’, ‘Cazzaniga’, ‘Ceccuzzi’, ‘Challis’, ‘Chankin’, ‘Chapman’, ‘Cianfarani’, ‘Clairet’, ‘Coda’, ‘Coelho’, ‘Coenen’, ‘Colas’, ‘Conway’, ‘Costea’, ‘Coster’, ‘Cote’, ‘Creely’, ‘Croci’, ‘Cseh’, ‘Czarnecka’, ‘Cziegler’, ‘D’Arcangelo’, ‘David’, ‘Day’, ‘Delogu’, ‘Marné’, ‘Denk’, ‘Denner’, ‘Dibon’, ‘Siena’, ‘Douai’, ‘Drenik’, ‘Drube’, ‘Dunne’, ‘Duval’, ‘Dux’, ‘Eich’, ‘Elgeti’, ‘Engelhardt’, ‘Erdös’, ‘Erofeev’, ‘Esposito’, ‘Fable’, ‘Faitsch’, ‘Fantz’, ‘Faugel’, ‘Faust’, ‘Felici’, ‘Ferreira’, ‘Fietz’, ‘Figuereido’, ‘Fischer’, ‘Ford’, ‘Frassinetti’, ‘Freethy’, ‘Fröschle’, ‘Fuchert’, ‘Fuchs’, ‘Fünfgelder’, ‘Galazka’, ‘Galdon-Quiroga’, ‘Gallo’, ‘Gao’, ‘Garavaglia’, ‘Garcia-Carrasco’, ‘Garcia-Muñoz’, ‘Geiger’, ‘Giannone’, ‘Gil’, ‘Giovannozzi’, ‘Gleason-González’, ‘Glöggler’, ‘Gobbin’, ‘Görler’, ‘Ortiz’, ‘Martin’, ‘Goodman’, ‘Gorini’, ‘Gradic’, ‘Gräter’, ‘Granucci’, ‘Greuner’, ‘Griener’, ‘Groth’, ‘Gude’, ‘Günter’, ‘Guimarais’, ‘Haas’, ‘Hakola’, ‘Ham’, ‘Happel’, ‘Harder’, ‘Harrer’, ‘Harrison’, ‘Hauer’, ‘Hayward-Schneider’, ‘Hegna’, ‘Heinemann’, ‘Heinzel’, ‘Hellsten’, ‘Henderson’, ‘Hennequin’, ‘Herrmann’, ‘Heyn’, ‘Heyn’, ‘Hitzler’, ‘Hobirk’, ‘Höfler’, ‘Hölzl’, ‘Höschen’, ‘Holm’, ‘Hopf’, ‘Hornsby’, ‘Horvath’, ‘Houben’, ‘Huber’, ‘Igochine’, ‘Ilkei’, ‘Ivanova-Stanik’, ‘Jacob’, ‘Jacobsen’, ‘Janky’, ‘Vuuren’, ‘Jardin’, ‘Jaulmes’, ‘Jenko’, ‘Jensen’, ‘Joffrin’, ‘Käsemann’, ‘Kallenbach’, ‘Kálvin’, ‘Kantor’, ‘Kappatou’, ‘Kardaun’, ‘Karhunen’, ‘Kasilov’, ‘Kazakov’, ‘Kernbichler’, ‘Kirk’, ‘Hansen’, ‘Klevarova’, ‘Kocsis’, ‘Köhn’, ‘Koubiti’, ‘Krieger’, ‘Krivska’, ‘Krämer-Flecken’, ‘Kudlacek’, ‘Kurki-Suonio’, ‘Kurzan’, ‘Labit’, ‘Lackner’, ‘Laggner’, ‘Lang’, ‘Lauber’, ‘Lebschy’, ‘Leuthold’, ‘Li’, ‘Linder’, ‘Lipschultz’, ‘Liu’, ‘Liu’, ‘Lohs’, ‘Lu’, ‘Cortemiglia’, ‘Luhmann’, ‘Lunsford’, ‘Lunt’, ‘Lyssoivan’, ‘Maceina’, ‘Madsen’, ‘Maggiora’, ‘Maier’, ‘Maj’, ‘Mailloux’, ‘Maingi’, ‘Maljaars’, ‘Manas’, ‘Mancini’, ‘Manhard’, ‘Manso’, ‘Mantica’, ‘Mantsinen’, ‘Manz’, ‘Maraschek’, ‘Martens’, ‘Martin’, ‘Marrelli’, ‘Martitsch’, ‘Mayer’, ‘Mazon’, ‘McCarthy’, ‘McDermott’, ‘Meister’, ‘Medvedeva’, ‘Merkel’, ‘Merle’, ‘Mertens’, ‘Meshcheriakov’, ‘Meyer’, ‘Miettunen’, ‘Milanesio’, ‘Mink’, ‘Mlynek’, ‘Monaco’, ‘Moon’, ‘Nabais’, ‘Nemes-Czopf’, ‘Neu’, ‘Neu’, ‘Nielsen’, ‘Nielsen’, ‘Nikolaeva’, ‘Nocente’, ‘Noterdaeme’, ‘Novikau’, ‘Nowak’, ‘Oberkofler’, ‘Oberparleiter’, ‘Ochoukov’, ‘Odstrcil’, ‘Olsen’, ‘Orain’, ‘Palermo’, ‘Pan’, ‘Papp’, ‘Perez’, ‘Pau’, ‘Pautasso’, ‘Penzel’, ‘Petersson’, ‘Acosta’, ‘Piovesan’, ‘Piron’, ‘Pitts’, ‘Plank’, ‘Plaum’, ‘Ploeckl’, ‘Plyusnin’, ‘Pokol’, ‘Poli’, ‘Porte’, ‘Potzel’, ‘Prisiazhniuk’, ‘Pütterich’, ‘Ramisch’, ‘Rasmussen’, ‘Rattá’, ‘Ratynskaia’, ‘Raupp’, ‘Ravera’, ‘Réfy’, ‘Reich’, ‘Reimold’, ‘Reiser’, ‘Ribeiro’, ‘Riesch’, ‘Riedl’, ‘Rittich’, ‘Rivero-Rodriguez’, ‘Rocchi’, ‘Rodriguez-Ramos’, ‘Rohde’, ‘Ross’, ‘Rott’, ‘Rubel’, ‘Ryan’, ‘Ryter’, ‘Saarelma’, ‘Salewski’, ‘Salmi’, ‘Sanchis-Sanchez’, ‘Santos’, ‘Sauter’, ‘Scarabosio’, ‘Schall’, ‘Schmid’, ‘Schmitz’, ‘Schneider’, ‘Schrittwieser’, ‘Schubert’, ‘Schwarz-Selinger’, ‘Schweinzer’, ‘Scott’, ‘Sehmer’, ‘Seliunin’, ‘Sertoli’, ‘Shabbir’, ‘Shalpegin’, ‘Shao’, ‘Sharapov’, ‘Sias’, ‘Siccinio’, ‘Sieglin’, ‘Sigalov’, ‘Silva’, ‘Silva’, ‘Silvagni’, ‘Simon’, ‘Simpson’, ‘Smigelskis’, ‘Snicker’, ‘Sommariva’, ‘Sozzi’, ‘Spolaore’, ‘Stegmeir’, ‘Stejner’, ‘Stober’, ‘Stroth’, ‘Strumberger’, ‘Suarez’, ‘Sun’, ‘Suttrop’, ‘Sytova’, ‘Szepesi’, ‘Tál’, ‘Tala’, ‘Tardini’, ‘Tardocchi’, ‘Teschke’, ‘Terranova’, ‘Tierens’, ‘Thorén’, ‘Told’, ‘Tolias’, ‘Tudisco’, ‘Treutterer’, ‘Trier’, ‘Tripský’, ‘Valisa’, ‘Valovic’, ‘Vanovac’, ‘Vugt’, ‘Varoutis’, ‘Verdoolaege’, ‘Vianello’, ‘Vicente’, ‘Vierle’, ‘Viezzer’, ‘Toussaint’, ‘Wagner’, ‘Wang’, ‘Wang’, ‘Weiland’, ‘White’, ‘Wiesen’, ‘Willensdorfer’, ‘Wiringer’, ‘Wischmeier’, ‘Wolf’, ‘Wolfrum’, ‘Xiang’, ‘Yang’, ‘Yang’, ‘Yu’, ‘Zagórski’, ‘Zammuto’, ‘Zhang’, ‘Zeeland’, ‘Zehetbauer’, ‘Zilker’, ‘Zoletnik’, ‘Zohm’, ‘Team’]

Neutral-Hydrogen Behavior Within rf-Discharge Plasma in the URAGAN-3M Torsatron[‘Volkov’, ‘Kasilov’, ‘Letuchii’, ‘Pankratov’, ‘Sidokur’]

Optimization of N=6 Helias-Type Stellarator[‘Subbotin’, ‘Mikhailov’, ‘Nuehrenberg’, ‘Isaev’, ‘Cooper’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Shafranov’, ‘Silva’, ‘Varandas’, ‘Campbell’]

FRC 2001: A White Paper on FRC Development in the Next Five Years[‘Steinhauer’, ‘al’, ‘Kernbichler’]

Integrated physics optimization of a quasi-isodynamic stellarator with poloidally closed contours of the magnetic field strength[‘Subbotin’, ‘Mikhailov’, ‘Shafranov’, ‘Isaev’, ‘Nührenberg’, ‘Nührenberg’, ‘Zille’, ‘Nemov’, ‘Kasilov’, ‘Kalyuzhnyj’, ‘Cooper’]

Results of integrated optimization of $N=9$ quasi-isodynamic stellarator[‘Shafranov’, ‘Cooper’, ‘Heyn’, ‘Isaev’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Mikhailov’, ‘Nemov’, ‘Nührenberg’, ‘Nührenberg’, ‘Samitov’, ‘Skovoroda’, ‘Subbotin’, ‘Zille’]

Quasi-Isodynamical Configurations without Transitional Particle Orbits[‘Subbotin’, ‘Cooper’, ‘Isaev’, ‘Mikhailov’, ‘Nührenberg’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Samitov’, ‘Shafranov’, ‘Zille’, ‘Duval’]

Reconstruction of the reconnection rate from Cluster measurements: First results[‘Semenov’, ‘Penz’, ‘Ivanova’, ‘Sergeev’, ‘Biernat’, ‘Nakamura’, ‘Heyn’, ‘Kubyshkin’, ‘Ivanov’]

Magnetic reconnection with space and time varying reconnection rates in a compressible plasma[‘Semenov’, ‘Heyn’, ‘Ivanov’]

Relativistic unsteady Petschek-type model of magnetic reconnection[‘Tolstykh’, ‘Semenov’, ‘Biernat’, ‘Heyn’, ‘Penz’]

Efficiency of Petschek-Type Relativistic Unsteady Reconnection[‘Semenov’, ‘Tolstykh’, ‘Volkonskaya’, ‘Heyn’, ‘Biernat’]

Consistent Recalculation of MHD Equilibria from VMEC[‘Seiwald’, ‘Leitold’, ‘Kernbichler’, ‘Kasilov’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Velocity Distributions of Beam-Target Fusion Products[‘Schöpf’, ‘Hensler’, ‘Kernbichler’, ‘Kuhn’, ‘Schöpf’, ‘Schrittwieser’]

Optimization of neoclassical transport in URAGAN-2M[‘Seiwald’, ‘Nemov’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’]

Self Consistent Recalculation of MHD Equilibria from VMEC[‘Seiwald’, ‘Leitold’, ‘Kernbichler’, ‘Kasilov’]

Optimization of energy confinement in Uragan-2M[‘Seiwald’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’]

Optimization of neoclassical transport in stellarators[‘Seiwald’, ‘Nemov’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’]

Optimization of Stellarators with Respect to Neoclassical Transport in Real Space[‘Seiwald’, ‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Duval’]

Optimization Studies of TJ-II Stellarator[‘Seiwald’, ‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Jiménez’, ‘Tribaldos’]

Reconstruction of the Reconnection Rate from Perturbations in the Ambient Magnetic Field[‘Semenov’, ‘Penz’, ‘Heyn’, ‘Ivanov’, ‘Kubyshkin’, ‘Biernat’, ‘Ivanova’]

Neoclassical transport in Uragan-2M for the 1/ν regime[‘Seiwald’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’]

Studies of the neoclassical transport for CNT[‘Seiwald’, ‘Nemov’, ‘Pedersen’, ‘Kernbichler’]

Studies of the neoclassical transport for CNT[‘Seiwald’, ‘Nemov’, ‘Pedersen’, ‘Kernbichler’]

Studies of the neoclassical transport for CNT[‘Seiwald’, ‘Nemov’, ‘Pedersen’, ‘Kernbichler’, ‘asior’, ‘Wo\lowski’]

Results of the stellarator optimization with respect to the neoclassical $1/\nu$ transport[‘Seiwald’, ‘Kasilov’, ‘Nemov’, ‘Kernbichler’, ‘Tribaldos’, ‘Pedersen’, ‘Kalyuzhnyj’]

Energy Conversion Options for ARIES-III – A Conceptual D-$^3$He Tokamak Reactor[‘J. F. Santarius’, ‘team’]

Numerical Study of Heat Transfer in Partially Destroyed Magnetic Configurations[‘Runov’, ‘Reiter’, ‘Kasilov’, ‘Schweer’, ‘Van Oost’, ‘Vietzke’]

A Computational Model for Transport in Partially Ergodized Magnetic Fields[‘Reiter’, ‘Runov’, ‘Kasilov’]

Study of Heat Conductivity in DED of TEXTOR-94 Using Multiple Coordinate System Approach[‘Runov’, ‘Reiter’, ‘Kasilov’, ‘Heyn’, ‘Kernbichler’, ‘Kaleck’, ‘Szegö’, ‘Todd’, ‘Zoletnik’]

A New Monte Carlo Approach to Transport Phenomena in an Ergodic Layer[‘Runov’, ‘Reiter’, ‘Kasilov’, ‘Pick’, ‘Thomas’]

Monte Carlo Study of Heat Conductivity in Stochastic Boundaries: Application to the TEXTOR Ergodic Divertor[‘Runov’, ‘Reiter’, ‘Kasilov’, ‘Heyn’, ‘Kernbichler’]

3D Monte Carlo modelling of edge plasmas in fusion experiments[‘Runov’, ‘Kasilov’, ‘Schneider’, ‘Reiter’]

Extensions of the 3-Dimensional Plasma Transport Code E3D[‘Runov’, ‘Kasilov’, ‘Schneider’, ‘Reiter’]

Transport modelling for ergodic configurations[‘Runov’, ‘Kasilov’, ‘McTaggart’, ‘Schneider’, ‘Bonnin’, ‘Zagórski’, ‘Reiter’]

Transport in complex magnetic geometries: 3D modelling of ergodic edge plasmas in fusion experiments[‘Runov’, ‘Kasilov’, ‘Reiter’, ‘McTaggart’, ‘Bonnin’, ‘Schneider’]

Benchmark of the 3-Dimensional Plasma Transport Codes E3D and BoRiS[‘Runov’, ‘Kasilov’, ‘Riemann’, ‘Borchardt’, ‘Reiter’, ‘Schneider’]

Overview of JET results[‘Romanelli’, ‘Contributorsb’]

Current Drive Calculations: Benchmarking Momentum Correction and Field-Line Integration Techniques[‘Romé’, ‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘Maaßberg’, ‘Marushchenko’, ‘Nemov’, ‘Turkin’, ‘Mateev’, ‘Benova’]

Wave Structures Excited in Compressible Petschek-Type Magnetic Reconnection[‘Penz’, ‘Semenov’, ‘Heyn’, ‘Ivanova’, ‘Ivanov’, ‘Biernat’, ‘Farrugia’, ‘Gratton’, ‘Institute’]

Calculations of the geodesic curvature of a magnetic line for the URAGAN-2M torsatron with taking into account the influence of the current-feeds and detachable joints of the helical winding[‘Nemov’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Lesnyakov’, ‘Besedin’]

Magnetic Reconnection in the Earthś Magentotail: Rconstruction Method and Data Analysis[‘Penz’, ‘Ivanova’, ‘Semenov’, ‘Nakamura’, ‘Ivanov’, ‘Biernat’, ‘Heyn’, ‘Sergeev’, ‘Kubyshkin’, ‘Maravell’]

Assessment of the trapped particle confinement in optimized stellarators[‘Nemov’, ‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Ku’, ‘Marco’, ‘Vlad’]

Conference summary: progress in experiments on innovative concepts, confinement and performance[’’, ‘’]

An ITER-like wall for JET[‘Paméla’, ‘Matthews’, ‘Philipps’, ‘Kamendje’, ‘Contributors’]

Calculations of the magnetic surface function gradient and associated quantities in stellarators with broken stellarator symmetry[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Seiwald’, ‘Mateev’, ‘Benova’]

Poloidal drift of trapped particle orbits in real-space coordinates[’’, ‘’, ‘’, ‘’]

Calculations of an effective ripple for a stellarator magnetic field computed by the HINT2 code[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Seiwald’, ‘Suzuki’, ‘Geiger’, ‘asior’, ‘Wo\lowski’]

Calculations of $1/\nu$ transport for Uragan-2M taking into account the influence of current-feeds and detachable joints of the helical winding[‘Nemov’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Lesnyakov’, ‘Seiwald’, ‘Besedin’, ‘asior’, ‘Wo\lowski’]

Poloidal motion of trapped particle orbits in real-space coordinates[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

Observational Signatures of Consecutive Reconnection Pulses[‘Posratschnig’, ‘Semenov’, ‘Heyn’, ‘Kubyshkin’, ‘Kiehas’]

Evaluation of an Effective Ripple in Stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Silva’, ‘Varandas’, ‘Campbell’]

The $1/\nu$ Transport Regime for Neoclassically Optimized Stellarator Systems[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Talmadge’, ‘Szegö’, ‘Todd’, ‘Zoletnik’]

Calculation of Asymmetric Neoclassical Transport Coefficients by Integration Along the Magnetic Field Line[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Schweer’, ‘Van Oost’, ‘Vietzke’]

The second adiabatic invariant and neoclassical transport in stellarators[‘Nemov’]

The Plateau Regime of Neoclassical Transport in Stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Szegö’, ‘Todd’, ‘Zoletnik’]

Evaluation of $1/\nu$ Neoclassical Transport in Stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Study of Neoclassical Transport Properties of W7-X Using the Integration Along Magnetic Field Lines[‘Nemov’, ‘Kasilov’, ‘Nührenberg’, ‘Nührenberg’, ‘Kernbichler’, ‘Heyn’]

Effective ripple in the CHS-qa configuration[‘Nemov’, ‘Isobe’, ‘Kernbichler’, ‘Kasilov’, ‘Matsuoka’, ‘Okamura’, ‘Shimizu’]

Additional criteria for optimization of trapped particle confinement in stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

Neoclassical transport for LHD in the $1/\nu$ regime analyzed by the NEO code[‘Nemov’, ‘Isobe’, ‘Kasilov’, ‘Kernbichler’, ‘Matsuoka’, ‘Okamura’, ‘Hidalgo’, ‘Milligen’]

The $\nabla B$ drift velocity of trapped particles in stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

Study of neoclassical transport and bootstrap current for W7-X in the $1/\nu$ regime, using results from the PIES code[‘Nemov’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Drevlak’, ‘Nührenberg’, ‘Kernbichler’, ‘Reiman’, ‘Monticello’]

Simple criteria for optimization of trapped particle confinement in stellarators[‘Nemov’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’, ‘Hidalgo’, ‘Milligen’]

A preliminary Assessment of Prospects of Fusion and Fission as Viable Power Sources[‘Molin’, ‘Heindler’, ‘Kernbichler’, ‘Sakanaka’]

Neoclassical diffusion in traps with a helical magnetic axis[‘Nemov’]

Calculations of the Magnetic Surface Function Gradient and Associated Quantities in a Torsatron[‘Nemov’]

Bounce-averaged velocity of trapped particle drift in toroidal helical systems[‘Nemov’]

Numerical study of the Mercier plasma stability and equilibrium plasma currents in an $l=3$ torsatron[‘Nemov’]

Calculation of transport processes in the Pfirsch-Schlüter regime in stellarators[‘Nemov’]

An investigation of Pfirsch-Schlüter currents in an $l=2$ torsaton[‘Nemov’]

Topology of Magnetic Field Strength Surfaces and Particle Confinement in Mirror-Type Stellarators[‘Mikhailov’, ‘Isaev’, ‘Nuehrenberg’, ‘Subbotin’, ‘Cooper’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Samitov’, ‘Shafranov’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Numerical study of stellarator plasma stability using the Mercier stability criterion[‘Nemov’]

Dynamics of r.f. Production of Stellarator Plasmas in the Ion Cyclotron Range of Frequency[‘Moiseenko’, ‘Lysoivan’, ‘Kasilov’, ‘Plyusnin’]

A global simulation study of ICRF heating in the LHD[‘Murakami’, ‘Fukuyama’, ‘Akutsu’, ‘Nakajima’, ‘Chan’, ‘Choi’, ‘Chiu’, ‘Lao’, ‘Kasilov’, ‘Mutoh’, ‘Kumazawa’, ‘Seki’, ‘Saito’, ‘Watari’, ‘Isobe’, ‘Saida’, ‘Osakabe’, ‘Sasao’, ‘Group’]

Global and Self-consistent Simulation of ICRF Heating in Toroidal Plasmas[‘Murakami’, ‘Fukuyama’, ‘Akutsu’, ‘Nakajima’, ‘Chan’, ‘Choi’, ‘Chiu’, ‘Lao’, ‘Kasilov’, ‘Mutoh’, ‘Kumazawa’, ‘Seki’, ‘Saito’, ‘Watari’, ‘Isobe’, ‘Saida’, ‘Osakabe’, ‘Sasao’, ‘Group’, ‘Wukitch’, ‘Bonoli’]

Comparison of the properties of quasi-isodynamic configurations for different numbers of periods[‘Mikhailov’, ‘Cooper’, ‘Heyn’, ‘Isaev’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Nührenberg’, ‘Nührenberg’, ‘Samitov’, ‘Shafranov’, ‘Skovoroda’, ‘Subbotin’, ‘Yamazaki’, ‘Zille’]

Temporal Evolution of Drift Alfvén Waves and Instabilities in an Inhomogeneous Plasma with Homogeneous Shear Flow[‘Mikhailenko’, ‘Mikhailenko’, ‘Heyn’, ‘Mahajan’]

Assessment of Transport in NCSX[‘Mikkelsen’, ‘Maassberg’, ‘Zarnstorff’, ‘Beidler’, ‘Houlberg’, ‘Kernbichler’, ‘Mynick’, ‘Spong’, ‘Strand’, ‘Tribaldos’]

Drift-Alfvén Instability in the Presence of Sheared Flow[‘Mikhailenko’, ‘Heyn’]

A Study of Three-Half-Turn and Frame Antennae for Ion Cyclotron Range of Frequency Plasma Heating in the URAGAN-3M Torsatron[‘Lysoivan’, ‘Moiseenko’, ‘Plyusnin’, ‘Kasilov’, ‘Bondarenko’, ‘Chechkin’, ‘Fomin’, ‘Grigoreva’, ‘Konovalov’, ‘Kovalov’, ‘Litvinov’, ‘Mironov’, ‘Nazarov’, ‘Pavlichanko’, ‘Pavlichenko’, ‘Shapoval’, ‘Skibenko’, ‘Volkov’]

Computation of neoclassical transport in stellarators using the full linearized Coulomb collision operator[‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Nemov’, ‘Allmaier’, ‘Marco’, ‘Vlad’]

Computation of neoclassical transport in stellarators with finite collisionality[‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Nemov’, ‘Allmaier’]

Calculation of Self-Consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator[‘Kernbichler’, ‘Kasilov’, ‘Heyn’, ‘Dewar’, ‘Falconer’, ‘Khachan’]

Evaluation of the Bootstrap Current in Stellarators[‘Kernbichler’, ‘Kasilov’, ‘Nemov’, ‘Leitold’, ‘Heyn’, ‘Duval’]

Calculation of neoclassical transport in stellarators with finite collisionality using integration along magnetic field lines[‘Kernbichler’, ‘Kasilov’, ‘Leitold’, ‘Nemov’, ‘Hidalgo’, ‘Milligen’]

Prospects of the Stochastic Mapping Technique[‘Kernbichler’, ‘Kasilov’, ‘Nemov’, ‘Heyn’]

Evaluation of the Bootstrap Current in Stellarators[‘Kernbichler’, ‘Kasilov’, ‘Nemov’, ‘Leitold’, ‘Heyn’, ‘Dewar’, ‘Falconer’, ‘Khachan’]

Calculation of Self-Consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator[‘Kernbichler’, ‘Kasilov’, ‘Heyn’, ‘Duval’]

Generalized Spitzer Function with Finite Collisionality in Toroidal Plasmas[’’, ‘’, ‘’, ‘’, ‘’]

Recent progress in NEO-2 - A code for neoclassical transport computations based on field line tracing[’’, ‘’, ‘’, ‘’, ‘’]

Recent progress in NEO-2 - A code for neoclassical transport computations based on field line tracing[’’, ‘’, ‘’, ‘’, ‘’]

Operational Parameters for D-$^3$He in Field-Reversed Configurations[’’]

Field Reversed Configurations – An Option for Fusion[‘Kernbichler’]

Synchrotron Radiation in Fusion Plasmas[‘Kernbichler’, ‘Heyn’, ‘Kernbichler’]

Evaluation of $1/\nu$ Transport and Parallel Current Density in Stellarators – A Unified Approach[‘Kernbichler’, ‘Nemov’, ‘Kasilov’, ‘Heyn’]

Passive Cyclotron Current Drive for Tokamaks[‘Kernbichler’, ‘Kasilov’]

The Role of Synchrotron Radiation in High-Temperature Fusion Plasmas[‘Kernbichler’, ‘Yasuda’]

Fusion Reactor Studies, Part I – Field Reversed Configurations[‘Kernbichler’, ‘Kuhn’, ‘Schöpf’, ‘Schrittwieser’]

Evaluation of $1/\nu$ Transport and Parallel Current Density in Stellarators Using the Integration Technique Along the Magnetic Field Line[‘Kernbichler’, ‘Nemov’, ‘Kasilov’, ‘Heyn’]

Application of the Stochastic Mapping Technique to Modeling the Distribution Function in Stellarator Geometry[‘Kernbichler’, ‘Kasilov’, ‘Heyn’]

Passive Cyclotron Current Generation With Fish-Scale Structures[‘Kernbichler’, ‘Kasilov’]

Synchrotron Radiation from High-Temperature Plasmas[‘Kernbichler’, ‘Santarius’]

Cyclotron Radiation from Specific Plasma Configurations[‘Kernbichler’, ‘Heyn’, ‘Kernbichler’]

Neoclassical Transport Calculations for Optimization Studies[‘Kernbichler’, ‘Kasilov’, ‘Nemov’, ‘Leitold’, ‘Heyn’]

Compound Light Ion Fuel Cycles: An Approach to Optimization[‘Kernbichler’, ‘Heindler’, ‘Veziroglu’]

D-based Fuel Cycles: The Benefits of Titium Leanness[‘Kernbichler’, ‘Feldbacher’, ‘Heindler’, ‘Nassri’, ‘Schöpf’]

The Promise of Tritium Lean Fuels[‘Kernbichler’, ‘Feldbacher’, ‘Heindler’]

Advanced Fusion Fuels[‘Kernbichler’, ‘Heindler’, ‘Bauer’]

Physics and Engineering Constraints on the Feasibility of Advanced Fuel Fusion Reactors[‘Kernbichler’, ‘Niederl’, ‘Heindler’, ‘Methfessel’]

Comparison of the Physics Performance of D-$^3$He Fusion in High- and Low-Beta Toroidal Devices[‘Kernbichler’, ‘Miley’, ‘Heindler’, ‘Möllendorf’, ‘Goel’]

Neutronlean Fusion Reactor Studies for Thermal Plasmas[‘Kernbichler’, ‘Heindler’]

D-based Fuel Cycles in MCF Reactors: Trade-offs between Neutron-, Radioactivity- and Power-Production[‘Kernbichler’, ‘Heindler’, ‘Velarde’, ‘Minguez’]

Parametric Analysis of p-11$B as Advanced Reactor Fuel[‘Kernbichler’, ‘Feldbacher’, ‘Heindler’]

D-$^3$He Fuel Cycles for Neutron-lean Reactors[‘Kernbichler’, ‘Miley’, ‘Heindler’]

Prospects of D-$^3$He in Field-Reversed Configurations[‘Kernbichler’, ‘Miley’, ‘Heindler’]

D-$^3$He in Field-Reversed Configurations – RUBY, An International Reactor Study[‘Kernbichler’, ‘M. Heindler’]

Fusion Reactor Studies[‘Kernbichler’, ‘Heindler’, ‘’, ‘Bauer’, ‘Heindler’]

Reactor Potential of Steady-State Field-Reversed Configurations[‘Kernbichler’, ‘Barnes’]

Sustainment of the reversed shear magnetic field configuration with near-rational q-min value with the help of the rotating magnetic field[‘Kasilov’, ‘Heyn’, ‘Ivanov’, ‘Kernbichler’]

Kinetic Modeling of ECRH in Stellarators Using the Stochastic Mapping Technique[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’, ‘Schweer’, ‘Van Oost’, ‘Vietzke’]

Cherenkov Absorption of Short-Wavelength Magnetohydrodynamic Waves by Electrons in a Tokamak[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Evaluation of the Parallel Current Density in a Stellarator Using the Integration Technique Along the magnetic Field Line[‘Kasilov’, ‘Nemov’, ‘Kernbichler’, ‘Heyn’, ‘Szegö’, ‘Todd’, ‘Zoletnik’]

Quasilinear Transport in Ergodic Magnetic Fields in the Presence of Cross Field Diffusion[‘Kasilov’, ‘Heyn’, ‘Kernbichler’]

Monte Carlo Modeling of the Electron Distribution Function in a Stellarator Using Mapping Techniques[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’]

Computation of Equilibrium Currents and Neoclassical Transport for Resonant Magnetic Surfaces in Stellarators[‘Kasilov’, ‘Nemov’, ‘Kernbichler’, ‘Heyn’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Mapping Technique for Stellarators with Realistic Magnetic Field[‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Stochastic Mapping Technique in Boozer Coordinates[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’]

MAPPING TECHNIQUE FOR S℡LARATORS WITH REALISTIC MAGNETIC FIELD[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’]

Mapping Technique for Stellarators[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’]

Transport Barriers in Braided Toroidal Magnetic Field[‘Kasilov’, ‘Reiter’, ‘Runov’, ‘Kernbichler’, ‘Heyn’, ‘Duval’]

On the `Magnetic’ Nature of Electron Transport Barriers in Tokamaks[‘Kasilov’, ‘Reiter’, ‘Runov’, ‘Kernbichler’, ‘Heyn’]

Suprathermal Ion Generation at Fundamental Minority Cyclotron Resonance Heating[‘Kasilov’, ‘Marushchenko’, ‘Pyatak’, ‘Stepanov’]

Passive Cyclotron Current Drive Efficiency for Relativistic Toroidal Plasmas[‘Kasilov’, ‘Kernbichler’]

The Nonlocal Drift-Kinetic Quasilinear Theory of Radiofrequency Heating in Magnetic Traps[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Non-Linearly Weighted Monte Carlo Modeling of rf Heating[‘Kasilov’, ‘Moiseenko’, ‘Heyn’, ‘Kernbichler’]

Solution of the Drift Kinetic Equation in the Regime of Weak Collisions by Stochastic Mapping Techniques[‘Kasilov’, ‘Moiseenko’, ‘Heyn’]

Monte-Carlo Modeling of ICRF Minority Heating in the Open Trap[‘Kasilov’, ‘Moiseenko’, ‘Kabantsev’]

3D Modeling of the Minority Distribution Function During rf Heating[‘Kasilov’, ‘Heyn’, ‘Kernbichler’, ‘Pick’, ‘Thomas’]

Mapping Techniques for Monte Carlo Modeling of the Electron Distribution Function in a Stellarator[‘Kasilov’, ‘Kernbichler’, ‘Nemov’, ‘Heyn’, ‘Pick’, ‘Thomas’]

Wave Mode Conversion Due to the Linear Plasma Echo in a Nonuniform Magnetic Field[‘Kasilov’]

Nonlocal Theory of Cyclotron and Cerenkov Absorption in a Nonuniformly Magnetized Plasma[‘Kasilov’, ‘Pyatak’, ‘Stepanov’, ‘Kadomtsev’]

Nonlinear Weighting Scheme for Monte Carlo Computation of the Particle Distribution Function During rf Heating[‘Kasilov’, ‘Moiseenko’, ‘Heyn’, ‘Kernbichler’, ‘Schittenhelm’, ‘Bartiromo’, ‘Wagner’]

Modelling of Quasi-Linear rf Heating Effects in Complex Magnetic Geometries[‘Kasilov’, ‘Rogister’]

Application of Mapping Techniques for the Kinetic Equation in the Weak Collisions Regime[‘Kasilov’, ‘Moiseenko’, ‘Heyn’, ‘Kernbichler’, ‘Pick’]

Effects of Collisions on Cyclotron Resonance in Magnetic Traps[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Conversion and Cyclotron Absorption of Fast Magnetosonic Waves in a Nonuniform Magnetic Field[‘Kasilov’, ‘Longinov’, ‘Pavlov’, ‘Pyatak’, ‘Stepanov’]

Cyclotron Resonance for Fast Magnetosonic Waves in Inhomogeneous Magnetic Fields of Toroidal Confinement Devices[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Nonlocal Quasilinear Theory of Ion Cyclotron Absorption for Fast Magnetosonic Waves in Tokamak Plasmas[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Nonlocal Interaction of Fast Magnetosonic Waves with Alpha-Particles in Tokamaks[‘Kasilov’, ‘Pyatak’, ‘Stepanov’]

Nonlocal Effects at Ion Cyclotron Resonances in Plasmas of Magnetic Traps[‘Kasilov’, ‘Pyatak’, ‘Stepanov’, ‘Vaclavic’, ‘Troyon’, ‘Sindoni’]

Monte-Carlo Modeling of ICRF Minority Heating in the Open Trap[‘Kasilov’, ‘Moiseenko’, ‘Heyn’, ‘Kernbichler’, ‘Biernat’]

Ion Cyclotron Heating of Plasma at the Second Harmonic in Mirror Traps[‘Kasilov’, ‘Ledovskoj’, ‘Moiseenko’, ‘Pilipenko’, ‘Stepanov’]

Modeling of nonlinear electron cyclotron resonance heating and current drive in a tokamak[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Pavlenko’, ‘Poli’, ‘Heyn’]

On electron cyclotron current drive near low order rational magnetic surfaces in tokamaks[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Society’]

Nonlinear versus quasilinear modeling of electron cyclotron current drive with 2nd$ harmonic X-mode[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Pavlenko’, ‘Heyn’, ‘Koch’, ‘S’]

Kinetic Modeling of Nonlinear Electron Cyclotron Resonance Heating[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Magnetic Field of Torsatron[’’, ‘’]

Effects of Nonlinear Wave-Particle Interaction on the Electron Distribution Function During ECRH[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Modeling of the Electron Distribution Function in the Presence of Non-Linear Wave-Particle Interaction[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Nonlinear Electron Cyclotron Current Drive with 2nd$ Harmonic X-Mode[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Pavlenko’, ‘Heyn’, ‘Duval’]

Power Absorption during Nonlinear Electron Cyclotron Wave-Particle Interaction[‘Kamendje’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’, ‘Giruzzi’]

Neoclassical transport for URAGAN-2M in the $1/\nu$ regime[’’, ‘’, ‘’, ‘’, ‘’]

Calculations of $1/\nu$ transport in an $l=3$ stellarator magnetic field in presence of magnetic islands caused by the magnetic system errors[‘Kalyuzhnyj’, ‘Nemov’]

Calculations of $1/\nu$ transport in an $l=3$ stellarator magnetic field in the presence of magnetic islands caused by magnetic system errors[‘Kalyuzhnyj’, ‘Nemov’]

Stochastic transport modeling of resonant magnetic perturbations in DIII-D[‘Joseph’, ‘Moyer’, ‘Evans’, ‘Schaffer’, ‘Runov’, ‘Schneider’, ‘Kasilov’, ‘Groth’, ‘Fenstermacher’]

Reconstruction of time-varying reconnection rate and X-line location[‘Ivanova’, ‘Semenov’, ‘Ivanov’, ‘Biernat’, ‘Kiehas’]

Calculation of stochastic thermal transport due to resonant magnetic perturbations in DIII-D[‘Joseph’, ‘Evans’, ‘Runov’, ‘Fenstermacher’, ‘Groth’, ‘Kasilov’, ‘Lasnier’, ‘Moyer’, ‘Porter’, ‘Schaffer’, ‘Schneider’, ‘Watkins’]

Reconstruction of the reconnection rate from Cluster measurements: Method improvements[‘Ivanova’, ‘Semenov’, ‘Penz’, ‘Ivanov’, ‘Sergeev’, ‘Heyn’]

Quasilinear Model of Magnetic Field Penetration of Dynamic Ergodic Divertor Fields[‘Heyn’, ‘Eherer’, ‘Kernbichler’, ‘Kasilov’, ‘Silva’, ‘Varandas’, ‘Campbell’]

Ion Thermal Diffusivity in High Ion Temperature Mode in CHS Heliotron/Torsatron Plasmas[‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Matsuoka’, ‘Nemov’, ‘Okamura’, ‘Pavlichenko’, ‘Pavlichenko’]

Neoclassical Transport in the CHS device and its Outlook for Improvement[‘Heyn’, ‘Isobe’, ‘Kasilov’, ‘Kernbichler’, ‘Matsuoka’, ‘Nemov’, ‘Okamura’, ‘Pavlichenko’]

Linear Modelling of Magnetic Field Penetration in DED[‘Heyn’, ‘Kasilov’, ‘Mank’]

A Study of Pressure Gradient Effects on the Interaction of a Rotating Magnetic Field with the Plasma in the Kinetic Approximation[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

Kinetic modelling of the interaction of rotating magnetic fields with a radially inhomogeneous plasma[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

Kinetic modelling of the interaction of rotating magnetic fields with a radially inhomogeneous plasma[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

Linear and Quasilinear Modeling of DED Induced Plasma Rotation[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’]

DED Field in a Selfconsistent Background[‘Eherer’, ‘Heyn’, ‘Kasilov’]

Quasi-linear modeling of the interaction of resonant magnetic field perturbations with a tokamak plasma[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Mulec’]

On the Relation between Plasma Rotation Induced by Low-Frequency Resonant Magnetic Perturbations and Transport in Ergodic Magnetic Fields[‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Heyn’]

Effect of the anomalous transport on the interaction of resonant magnetic field perturbations with tokamak plasmas[‘Heyn’, ‘Ivanov’, ‘Joseph’, ‘Kasilov’, ‘Kernbichler’]

Kinetic estimate of the shielding of resonant magnetic field perturbations by the plasma in DIII-D[‘Heyn’, ‘Ivanov’, ‘Kasilov’, ‘Kernbichler’, ‘Joseph’, ‘Moyer’, ‘Runov’]

Analytical Calculations of Source Energy Spectra from Maxwellian Fusion Plasmas of Arbitrary Temperature[‘Heinrichs’, ‘Schöpf’, ‘Riedler’, ‘Feldbacher’, ‘Heindler’, ‘Kernbichler’]

Neoclassical diffusion in a toroidal system with a three-dimensional magnetic axis[‘Goodblood’, ‘Nemov’, ‘Shishkin’]

Advanced Fuel Fusion[‘Heindler’, ‘Kernbichler’, ‘Möllendorf’, ‘Goel’]

Nonlinear Absorption of 2nd$ Harmonic X-Mode ECRH at W7-AS Stellarator[‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Romé’, ‘Gasparino’, ‘Marushchenko’, ‘Schweer’, ‘Van Oost’, ‘Vietzke’]

Current Topics in Astrophysical and Fusion Plasma Research[‘Heyn’, ‘Kernbichler’]

Fokker-Planck Estimation of Electron Distribution Functions for High Power ECCD at W7-AS[‘Gasparino’, ‘Geiger’, ‘Kasilov’, ‘Maaßberg’, ‘Marushchenko’, ‘Murakami’, ‘’, ‘Schweer’, ‘Van Oost’, ‘Vietzke’]

Rapid Reconnection in Compressible Plasma[‘Heyn’, ‘Semenov’]

Current Topics in Astrophysical and Fusion Plasma Research[‘Heyn’, ‘Kernbichler’, ‘Biernat’]

Current Topics in Astrophysical and Fusion Plasma Research[‘Heyn’, ‘Kernbichler’, ‘Biernat’]

A possible way to reverse the impurity influx by Alfvén heating in a tokamak plasma[‘Grekov’, ‘Kasilov’]

Linear Wave Model of the DED Field[‘Eherer’, ‘Heyn’, ‘Kasilov’, ‘Kernbichler’, ‘Duval’]

Bootstrap current for neoclassically optimized stellarator systems[‘Drevlak’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Monticello’, ‘Nemov’, ‘Nührenberg’, ‘Nührenberg’, ‘Reiman’, ‘Koch’, ‘S’]

Fusion Space Propulsion with a Field-Reversed Configuration[‘Chapman’, ‘Kernbichler’, ‘Miley’, ‘Heindler’]

Effective ripple for the W7-X magnetic field calculated by the PIES code[‘Drevlak’, ‘Heyn’, ‘Kalyuzhnyj’, ‘Kasilov’, ‘Kernbichler’, ‘Monticello’, ‘Nemov’, ‘Nührenberg’, ‘Reiman’, ‘Koch’, ‘S’]

Neoclassical Transport in stellarators - Further results from an international collaboration[‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Mikkelsen’, ‘Murakami’, ‘Nemov’, ‘Schmidt’, ‘Spong’, ‘Tribaldos’, ‘Wakasa’, ‘White’]

Neoclassical Transport in stellarators - Results from an international collaboration[‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Mikkelsen’, ‘Murakami’, ‘Nemov’, ‘Schmidt’, ‘Spong’, ‘Tribaldos’, ‘Wakasa’, ‘White’, ‘Koch’, ‘S’]

Initial Results from an International Collaboration on Neoclassical Transport in Stellarators[‘Beidler’, ‘Kasilov’, ‘Kernbichler’, ‘Maaßberg’, ‘Mikkelsen’, ‘Murakami’, ‘Nemov’, ‘Schmidt’, ‘Tribaldos’, ‘White’]

$\delta f$ Monte Carlo computations of neoclassical transport in stellarators with reduced variance[‘Allmaier’, ‘Kasilov’, ‘Kernbichler’, ‘Leitold’]

ICNTS - Benchmarking of Bootstrap Current Coefficients[‘Allmaier’, ‘Beidler’, ‘Isaev’, ‘Kasilov’, ‘Kernbichler’, ‘Maassberg’, ‘Murakami’, ‘Spong’, ‘Tribaldos’]

Calculation of the bootstrap current profile for the stellarator TJ-II[‘J. L. Velasco’, ‘Castejon’, ‘McKenna’]

Calculations of high energy particle losses for Uragan-2M taking into account the influence of current-feeds and detachable joints of the helical winding[‘Nemov’, ‘Kasilov’, ‘’, ‘Kalyuzhnyj’, ‘Seiwald’, ‘McKenna’]

Iterative approach to linear ideal MHD modeling of plasma response to 3D magnetic perturbations in tokamaks[‘Lainer’, ‘Kasilov’, ‘Kernbichler’, ‘Reichelt’, ‘Albert’]

Account of non-standard orbits in computations of neoclassical toroidal viscous torque in the resonant plateau regime of a tokamak[‘Buchholz’, ‘Kasilov’, ‘Kernbichler’, ‘Grabenwarter’, ‘Savchenko’, ‘Albert’]

Resonant transport of fusion alpha particles in quasisymmetric stellarators[‘Albert’, ‘Rath’, ‘Babin’, ‘Buchholz’, ‘Kasilov’, ‘Kernbichler’]

Evaluation of toroidal torque by non-resonant magnetic perturbations in tokamaks for resonant transport regimes using a Hamiltonian approach[‘Albert’, ‘Heyn’, ‘Kapper’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Symplectic integration with non-canonical quadrature for guiding-center orbits in magnetic confinement devices[‘Albert’, ‘Kasilov’, ‘Kernbichler’]

Hamiltonian approach for evaluation of toroidal torque from finite amplitude non-axisymmetric perturbations of a tokamak magnetic field in resonant transport regimes[‘Albert’, ‘Heyn’, ‘Kapper’, ‘Kasilov’, ‘Kernbichler’, ‘Martitsch’]

Solution of drift kinetic equation in stellarators and tokamaks with broken symmetry using the code NEO-2[‘Kernbichler’, ‘Kasilov’, ‘Kapper’, ‘Martitsch’, ‘Nemov’, ‘Albert’, ‘Heyn’]

SIMPLE: Symplectic Integration Methods for Particle Loss Estimation[‘Christopher G. Albert’, ‘Sergei V. Kasilov’, ‘Winfried Kernbichler’]

Physics-informed transfer path analysis with parameter estimation using Gaussian processes[‘Albert’]

Gaussian Process Regression for Data Fulfilling Linear Differential Equations with Localized Sources[‘Albert’, ‘Rath’]

Gaussian processes for data fulfilling linear differential equations[‘Albert’]

SIMPLE: Symplectic Integration Methods for Particle Loss Estimation[‘Albert’, ‘Kasilov’, ‘Kernbichler’]

Data augmentation for disruption prediction via robust surrogate models[‘Rath’, ‘Rügamer’, ‘Bischl’, ‘von Toussaint’, ‘Rea’, ‘Maris’, ‘Granetz’, ‘Albert’]

proFit: Probabilistic Response Model Fitting with Interactive Tools[‘Albert’, ‘Kendler’, ‘Babin’, ‘Hadwiger’, ‘Hofmeister’, ‘Khallaayoune’, ‘Kramp’, ‘Rath’, ‘Rubino-Moyner’]

Symplectic Gaussian process regression of maps in Hamiltonian systems[‘Rath’, ‘Albert’, ‘Bischl’, ‘von Toussaint’]

Prediction of the vibro-acoustic response of a structure-liner-fluid system based on a patch transfer function approach and direct experimental subsystem characterisation[‘Albert’, ‘Veronesi’, ‘Nijman’, ‘Rejlek’]