Fokker-Planck collision model and Monte Carlo method

The first part of the derivation follows closely the book *Collisional transport in magnetized plasmas* of Helander, Sigmar (2002), pp.22-24. Extensive information on the topic of kinetic theory and its various applications can be found in the book *Stochastic processes in physics and chemistry* of N.G. Van Kampen (2007).

We look at collisional effects to the velocity dependency of the distribution function f(v,t). Since no particles are created or destroyed by collisions, after a sufficiently short time-step Δt the change in f at a fixed point v of velocity space can be written as

$$f(v,t + \Delta t) = \int d\Delta v \, f(v - \Delta v, t) F(v - \Delta v, \Delta v). \tag{1}$$

The function $F(v - \Delta v, \Delta v)$ quantifies the probability with which a particle of velocity $v - \Delta v$ will be scattered to have velocity v, and $f(v - \Delta v, t)$ measures the population at the velocity space point from which scattering occurs. Integration corresponds to a summation over all possible distances Δv from v. The central assumption to obtain a Fokker-Planck collision operator is the sufficiently fast decay of F with Δv . Physically this means that most of the velocity changes by a single collision are small, which is a good approximation for Coulomb collisions in plasmas or for Brownian motion in chemistry (Kramers' equation). An expansion up to second order around v in the first argument $v - \Delta v$ yields

$$f(v, t + \Delta t) \approx \int d\Delta v \left(f(v, t) F(v, \Delta v) - \Delta v \frac{\partial (f(v, t) F(v, \Delta v))}{\partial v} + \frac{\Delta v^2}{2} \frac{\partial^2}{\partial v^2} (f(v, t) F(v, \Delta v)) \right).$$
(2)

Since no particles can be lost, the integral over $F(v, \Delta v)$ across the whole range of Δv has to fulfil the normalisation condition

$$\int \Delta v \, F(v, \Delta v) = 1,\tag{3}$$

which means that the first term can be integrated to yield just f(v,t). Moving this term to the left-hand side and division by Δt yields the partial time derivative of f due to collisions in the limit $\Delta t \to 0$ with

$$\left(\frac{\partial f}{\partial t}\right)_{c} = \lim_{\Delta t \to 0} \frac{f(v, t + \Delta t) - f(v, t)}{\Delta t}$$

$$\approx -\frac{\partial}{\partial v} \left(\underbrace{\frac{\langle \Delta v \rangle}{\Delta t}}_{A(v)} f(v, t)\right) + \frac{1}{2} \frac{\partial^{2}}{\partial v^{2}} \left(\underbrace{\frac{\langle \Delta v^{2} \rangle}{\Delta t}}_{B(v)} f(v, t)\right), \tag{4}$$

where we have defined

$$A(v) \equiv \frac{\langle \Delta v \rangle}{\Delta t}, \quad B(v) \equiv \frac{\langle \Delta v^2 \rangle}{\Delta t}$$

containing the integral over $d\Delta v$ as moment averages for powers of Δv with weight F,

$$\langle \Delta v^k \rangle = \int d\Delta v F(v, \Delta v) \Delta v^k.$$
 (5)

If we furthermore assume A to be linear in v and B constant, we can write this collision term in the so-called Ornstein-Uhlenbeck form

$$\left(\frac{\partial f}{\partial t}\right)_c = \hat{L}_c f = \nu_c \frac{\partial}{\partial v} \left(v f + v_T^2 \frac{\partial f}{\partial v}\right), \tag{6}$$

where we have expressed Fokker-Planck coefficients A and B via collision frequency ν_c and thermal velocity ν_T to fulfil

$$A \equiv -v\nu_c,\tag{7}$$

$$B \equiv 2\nu_c v_T^2,\tag{8}$$

thus uniquely defining first and second moments $\langle \Delta v \rangle$, $\langle \Delta v^2 \rangle$ of Δv with respect to F. The choice of the name thermal velocity for v_T stems from the convergence of f towards a stationary thermalised state f_{∞} given by a Gaussian in v (Boltzmann distribution in $E = \frac{mv^2}{2}$ for 1D or Maxwellian for 3D) at $t \to \infty$ with

$$f_{\infty}(v) = \frac{1}{\sqrt{2\pi v_T^2}} e^{-\frac{v^2}{2v_T^2}}.$$
 (9)

It can be easily checked that $\hat{L}_c f_{\infty} = 0$, so a characterisation for the stationary f_{∞} is being an eigenfunction of \hat{L}_c with eigenvalue 0.

To define a random process for a Monte Carlo method representing the Ornstein-Uhlenbeck operator, we require a random distribution of Δv whose first and second moment are given by Eqs. (7-8). Effectively this means to sample from a model for the distribution function $F(\Delta v)$. A straightforward choice is a normal (Gaussian) distribution

$$F(\Delta v) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(\Delta v - \mu)^2}{2\sigma^2}}$$
(10)

with mean

$$\mu = \langle \Delta v \rangle = -\nu_c v \Delta t \tag{11}$$

and variance

$$\sigma^2 = \langle \Delta v^2 \rangle = 2\nu_c v_T^2 \Delta t. \tag{12}$$

In each time-step we draw a random sample from this distribution by

$$\Delta v = -\nu_c v \Delta t + \sqrt{2\nu_c v_T^2} \Theta \sqrt{\Delta t}, \qquad (13)$$

where Θ is a random number sampled from the standard normal distribution. As an alternative to using the normal distribution as a model for F, it would also be possible to use equally uniformly distributed random numbers centred around μ and with the correct scaling of the variance.