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Preface

This set of lecture notes is intended as the basis of the lecture as well as study
material for students. The focus will be the application of the methods to
fusion plasmas. Note that there are questions at the end of each chapter. These
questions act as a guideline for preparing for the exam. For the best learning
effect, try to answer them without looking at the lecture notes. Only when no
solution comes to mind, read the notes and focus on what you missed.

Equations or formulas that are important are written in boxes. It would be
beneficial to understand or even memorize these as they frequently occur when
in the context of plasma physics.

Units

As is often used in fusion physics, we employ the cgs-unit system.

Magnetic field [B] = G (1)

Length [r] = cm (2)

Electric field [E] = statV cm−1 (3)

Mass [m] = g (4)

Time [t] = s (5)

Velocity [v] = cm / s (6)

Particle density [n] = cm−3 (7)

. . .

To go from SI units to cgs units, use the following prescription:

ε0 →
1

4π
(8)

µ0 →
4π

c
(9)

B→ 1

c
B (10)

A→ 1

c
A (11)



Chapter 1

Primer on Plasma Physics

1.1 Introduction

A plasma is a partially or fully ionized gas that exhibits collective behavior
due to Coulomb interactions. The property of collective phenomena is where
the complexity of plasmas occurs. In principle, multiple ”pictures” or models
are used to investigate plasma under various circumstances. They vary in their
complexity, but also in their validity range and the range of covered physical
phenomena. Hence, not every model can be used to describe a certain situa-
tion. Also, using an unnecessarily complex model to describe a simple system
is obviously undesirable.

As illustrated in figure 1.1, at the most fundamental level, a plasma can be
described by the particle picture. This microscopic description follows each
individual charged particle of the plasma. The motion is determined by the
Lorentz force. As we will see, many properties of the particle picture carry on
to the kinetic picture and, therefore, we will discuss the particle picture in more
detail in the beginning of the lecture in section 1.2.

On the other end of the range is the fluid picture. Herein, plasma is
described by macroscopic quantities like the density, pressure, averaged velocity,
temperature and so on that vary in space and time. The fluid picture is derived
from the kinetic picture. This is described in section 2.4.

In between particles and fluids is the statistical approach of the kinetic
picture, where plasma is described by the distribution function of particles in
phase space. That is, the distribution function tells us how many particles there
are in a certain volume of phase space at some time. The main part of this lec-
ture will be dedicated to the kinetic description and the equation that governs
the evolution of the distribution function, the Vlasov equation.

Why are we interested in the kinetic picture? It is less precise than the
particle picture and more conceptually complex than the fluid picture. However,
firstly, it is (currently?) impossible to track the trajectories of the 1020-ish



1.2. PARTICLE PICTURE

Figure 1.1: The different pictures of how to describe a plasma.

particles in a (fusion) plasma. Kinetic theory gives us a statistical description
of this large amount of particles. Second, the fluid picture inherently assumes
the velocity distribution of the plasma to be in equilibrium, which is rarely the
case in a plasma. As such, the fluid picture omits physics like wave-particle
interactions, instabilities, and turbulence.

Kinetic theory comes in multiple flavors with various assumptions for specific
situations. Most prominently, drift-kinetic theory is used to describe trans-
port phenomena in fusion plasmas [5], and gyro-kinetic theory is used to
describe turbulence. However, in this lecture, we will focus on the full kinetic
theory, and will only briefly touch on drift-kinetics and gyro-kinetics if there is
time.

1.2 Particle picture

Before going into kinetic theory, we shall recall facts and ideas about the particle
picture, specifically the motion of particles in electromagnetic fields. A particle
in electromagnetic fields is subject to the Lorentz force, where the governing
equations of motion are

Single-particle equations of motion

dr(t)

dt
= v (1.1)

dv(t)

dt
=

Ze

m

(
E+

1

c
v ×B

)
, (1.2)

where Z is the charge number, e is the elementary charge and m is the mass
of the particle. For a first example, let’s consider the motion of a particle in
a constant magnetic field B = Bez without an electric field. In this case, the
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1.2. PARTICLE PICTURE

force equation gives

v̇ =
Ze

mc
v ×B (1.3)

= ωcv⊥, (1.4)

where we have the

Cyclotron frequency

ωc =
ZeB

mc
(1.5)

or gyro frequency which is often also written with Ω, and v⊥ = v × h =
(vy,−vx, 0) is the velocity perpendicular to the magnetic field. Here, we also
defined the a general notation for the direction of the magnetic field, h = B/B.
We can also explicitely write the equations,

v̇x = ωcvy,

v̇y = −ωcvx,

v̇z = 0.

r̈x = ωcṙy, (1.6)

r̈y = −ωcṙx, (1.7)

r̈z = 0. (1.8)

Let’s solve the equations for the velocity. Deriving the first equation with
respect to time and substituting the second equation, we have

v̈x + ω2
cvx = 0, (1.9)

which is solved by either a sine or a cosine function. However, considering also
the second equation v̇y = −ωcvx, it can only be a sine function to arrive at the
right sign. Therefore, the solution is

vx = v⊥ sin(ωct+ ϕ0) + vx0, (1.10)

vy = v⊥ cos(ωct+ ϕ0) + vy0. (1.11)

Hence, the velocity vector is given by

v(t) = v∥h+ v⊥ (1.12)

= vz0h+ v⊥

(
cos(ωct)ex − sin(ωct)ey

)
, (1.13)

where we have set the initial velocity in x and y, and the initial phase ϕ0 to zero
for brevity. So, the magnetic field does not accelerate the particle along its di-
rection. However, perpendicular to the magnetic field, the particle is constantly
accelerated in a circular motion.
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1.2. PARTICLE PICTURE

Figure 1.2: The direction of the gyro motion of (positively charged) ions and
electrons in a magnetic field.

Next, we solve for the particle position by integrating the velocity

r(t) =

t∫
t0

dt′ v(t′) (1.14)

= vz0th+
v⊥
ωc

(
sin(ωct)ex + cos(ωct)ey

)
, (1.15)

where we set t0 = 0 and assumed zero initial conditions, r0 = 0. We see that
the particle orbit in a constant magnetic field is comprised of two parts: a
linear motion along the magnetic field and a circulating motion perpen-
dicular to it. The circulating motion, commonly called gyration, gyro motion,
cyclotron motion, etc., has a frequency ωc = ZeB/(mc) that depends on the
magnetic field and the parameters of the particle. Note that the frequency is
signed, i.e. the direction of rotation depends on the sign of the charge. For ions
(Z > 0), the rotation is clockwise in the ex, ey plane, while for electrons it is
counter-clockwise as sketched in figure 1.2 Note that the gyration direction is
independent of the sign of the parallel velocity, but, of course, depends on the
sign of the magnetic field.

Length scale: The radius of the gyration is called the Larmor radius or
gyro radius,

Larmor radius

ρL =
v⊥
ωc

. (1.16)

This is an important length occurring in magnetically confined plasmas and
often serves as a small parameter (in comparison to the system size or the
magnetic field scale length) for Taylor expansions. We will encounter such an
expansion for example in section 3.1. Further, the Larmor radius depends on the
mass of the considered particle. In particular, for electrons, the Larmor radius is
significantly smaller as for ions (tens of microns versus a few millimeter). This
can be exploited in modeling of fusion plasmas, specifically, by ignoring the
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1.2. PARTICLE PICTURE

Figure 1.3: Particle motion dissected into guiding center (green dot) motion
and particle (red dot) motion.

gyro motion of electrons and consider its guiding center position instead of the
actual particle position. This is done in drift-kinetic theory (c.f. section 3.1),
for example.

Time scale: The gyro motion not only defines a length scale, but also a time
scale with the cyclotron frequency, τc = 2π/ωc. The cyclotron frequency is
rather high, e.g. ∼ 1011 Hz for electrons in typical fusion plasma conditions (B
in the order of a few tesla). For ions, which are much heavier, the frequency
is accordingly lower, e.g. a factor for hydrogen mp/me ≈ 2000 or deuterium
mD/me ≈ 4000 lower1.

Note that in an inhomogeneous magnetic field, both the Larmor radius and
the cyclotron frequency will vary with the position of the particle.

Often, the particle position is split into

r(t) = R(t) + ρ(t), (1.17)

i.e. into the slow guiding center motion

R(t) = (rz0 + v∥t)h+ rx0ex + ry0ey, (1.18)

and the fast gyro motion

ρ(t) = ρL

(
sin(ωct+ ϕ0)ex + cos(ωct+ ϕ0)ey

)
. (1.19)

A sketch of this split can be seen in figure 1.3.

1These mass ratios are very often useful for order of magnitude estimations. So, keep them
in mind.
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1.2. PARTICLE PICTURE

1.2.1 Adding an electric field

So far, we have focused on the motion of a charged particle in a constant mag-
netic field. What happens if we add an electric field? Consider Lorentz’ force
law

m
dv

dt
= ZeE+

Ze

c
v ×B. (1.20)

Parallel to the magnetic field, we have

m
dv∥

dt
= ZeE∥, (1.21)

that is, an electric field parallel to the magnetic field freely accelerates the
particle. On the other hand, perpendicular to the magnetic field, we have the
equation

m
dv

dt
×B = ZeE×B+

Ze

c
(v ×B)×B (1.22)

= ZeE×B+
Ze

c

(
B(v ·B)− vB2

)
(1.23)

= ZeE×B+
Ze

c

(
hv∥B

2 − vB2
)

(1.24)

= ZeE×B− Ze

c
B2v⊥, (1.25)

where we have used the BAC-CAB rule and v⊥ = v − v∥h. From earlier we
know that the B field leads to a fast circular motion of the particle in v⊥. This
is contained in the term on the left hand side and the second term on the right
hand side. However, there is a term appearing with the electric field. This
term leads to a slow drift motion of the particle. Omitting the fast gyromotion
contribution, the governing equation is

0 = ZeE×B− Ze

c
B2vE (1.26)

E ×B drift velocity

⇒ vE =
cE×B

B2
. (1.27)

This is the so-called E × B drift veloctiy. It is perpendicular to both the
electric and magnetic field. A sketch of the E × B drift is shown in figure 1.4.
We can understand the drift motion as follows: Without the electric field, the
particle gyrates around magnetic field lines. When an electric field is added,
the circular motion is accelerated in parts of the orbit and decelerated in others.
Considering the Larmor radius ρL = v⊥/ωc, this change in v⊥ means that the
Larmor radius is decreasing and increasing in different parts of the orbit. Hence,
the particle drifts.
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1.2. PARTICLE PICTURE

Figure 1.4: A beautiful sketch of the E ×B drift motion.

It is important to note that the E × B drift is independent of the charge
and mass of the particle. This means that the drift is the same for all particles
in a plasma. Such a type of drift is called ambipolar. Since both positive and
negative charge carriers drift with the same speed, there is no net electric field
or current generated.

To summarize, a particle in a constant electric and magnetic field has three
components to its motion

(1) A parallel motion that is accelerated by the electric field.

(2) A fast circular motion perpendicular to the magnetic field.

(3) A slow drift motion perpendicular to both the electric and magnetic field.

In general, when particles are subject to a force F they will drift in a magnetic
field according to

Perpendicular drift velocity due to a force

vd =
c

Ze

F×B

B2
. (1.28)

For example, it is unavoidable on Earth, or anywhere else in the Universe
for that matter, to have a gravitational force acting on the particles. This
leads to a gravitational drift of the particles in a magnetic field. However,
the gravitational drift is usually negligible in comparison to other drifts in a
plasma.

Note that this drift velocity is perpendicular to the magnetic field. Of course,
forces can act in the parallel as well.

1.2.2 Drifts in non-uniform magnetic fields

Generalising the particle motion to non-uniform electromagnetic fields can con-
ceptually be thought of as the addition of drifts due to forces on the particles.
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1.2. PARTICLE PICTURE

But, in general non-uniform electromagnetic fields greatly increase the com-
plexity of the particle motion. Here, we will only shortly introduce the different
drifts that can occur in such fields. A more detailed discussion can be found in
the majority of standard plasma physics texts, e.g. [4].

Before going into the drifts, let’s introduce the notion of the magnetic
dipole moment. A magnetic dipole is generated for example by a permanent
magnet, which has two poles: a north and a south pole. But, such a dipole
field can also be generated by a current loop. The magnetic dipole moment µ
is defined as

Magnetic dipole moment

µ = IA. (1.29)

Here, µ is the magnetic moment which quantifies the direction and strength
of the dipole field, I is the current flowing through the current loop and A is
the area vector of the loop-enclosed area.

Considering the gyromotion of particles around magnetic field lines, they
pose a similar scenario: the flow of a current around an area. In this case, the
current is given by

I =
eZ

τc
, (1.30)

where τc = 2π/ωc is the cyclotron period. The area, on the other hand, is given
by

A = πρ2L. (1.31)

Hence, the strength of the magnetic moment of a gyrating particle is given by

µ = IA (1.32)

=
eZ

τc
πρ2L (1.33)

=
v2⊥
ω2
c

eZ

2π
ωc (1.34)

Magnetic moment

µ =
mv2⊥
2B

. (1.35)

A sketch of the magnetic moment is shown in figure 1.5. The direction of
the magnetic moment is such that it opposes the external field. Hence, gyrating
particles in a plasma have a tendency to reduce the total magnetic field and
therefore, plasma is a diamagnetic medium. It prevents external fields from
entering.
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1.2. PARTICLE PICTURE

Figure 1.5: Magnetic moment of a charged particle gyrating in a magnetic field.

Hence, a gyrating particle in a magnetic field can be seen as a tiny magnet
moving in an external magnetic field. This conceptual ansatz is also called
Pauli particle.

Note that this is the perpendicular kinetic energy of the particle divided by
the magnetic field strength, or

W⊥ =
mv2⊥
2

= µB. (1.36)

Since the fast gyromotion is now encoded in the magnetic moment, this energy
can be seen as a potential energy of the tiny magnet instead of the kinetic
energy of the particle. From this potential, we can actually derive a force, if the
magnetic field strength varies in space. The force is given by

F∇B = −∇(µB) = −µ∇B −B∇µ. (1.37)

The magnetic moment µ is adiabatically conserved in any magnetic field struc-
ture in which the variation of the external fields are slow and on larger scales
than the fast gyromotion. Hence ∇µ = 0 and we get the so-called gradient-B
drift that follows from this force

Gradient-B drift

F∇B = −µ∇B ⇒ v∇B = − µc

Ze

∇B ×B

B2
. (1.38)

This drift can be understood in the following way: When a particle gyrates
in a magnetic field that is inhomogeneous, the gyrofrequency ωc = eZB/(mc)
will change. With the gyrofrequency, the Larmor radius changes as well. Hence,
the particle gyrates in and out of the region of stronger magnetic field strength
and drifts in the direction perpendicular to the magnetic field gradient and the
magnetic field. It is a similar explanation to the E × B drift, where parts of
the orbit the particle accelerates and in others it decelerates which affects the
Larmor radius via the perpendicular velocity.

Note that since the drift velocity depends on the sign (and the force doesn’t)
the drift direction is different for positively and negatively charged particles.
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1.2. PARTICLE PICTURE

Figure 1.6: Sketch of the gradient-B drift. The particle gyrate in a magnetic
field that is inhomogeneous.

This is sketched in figure 1.6.

The gradient-B force is not exclusive to the perpendicular direction. There-
fore, we also get a force parallel to the magnetic field. This force is called the
mirror force and is given by

F∇B,∥ = −µ∇∥B. (1.39)

This force accelerates or decelerates the parallel motion of the particle. But
why is it called mirror force? Consider a particle with a magnetic moment in an
external magnetic field that is inhomogeneous. Now, we follow the inhomoge-
neous magnetic field from a region of lower field strength to larger field strength.
At a certain point, the particle will be decelerated to zero parallel velocity and
reflected such that the sign of the parallel velocity changes. This is called the
mirror effect.

Instead of the Newtonian force picture, we can consider the Hamiltonian
energy picture for a second. With the definition of the magnetic moment, we
can rewrite the Hamiltonian as

H =
mv2

2
+ ZeΦ (1.40)

=
mv2∥

2
+

mv2⊥
2

+ ZeΦ (1.41)

=
mv2∥

2
+ µB + ZeΦ. (1.42)

Then, we can express the parallel velocity in terms of the conserved energy and
magnetic moment as

v∥ = ±
√

2

m

(
H − µB

)
, (1.43)

where we neglect the electrostatic potential for a minute. Since energy and
magnetic moment are conserved and the velocity cannot become complex, there
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1.2. PARTICLE PICTURE

Figure 1.7: Sketch of the magnetic mirror effect. Indicated in red are circular
coils that generate the magnetic field given in blue. The magnetic field strength
is largest in the center of the coils and decreases towards the middle.

is no possibility that the particle enters regions of sufficiently large magnetic
field strength. Otherwise v∥ would become complex. Rather, the particle is
reflected from this region. The particle is trapped in a region of low magnetic
field strength bounded by ”walls” of larger magnetic field strength. This is
sketched in figure 1.7. Particles with enough energy can escape the magnetic
mirror and are called passing particles.

In toroidal magnetic confinement devices, the magnetic mirror effect leads to
so-called banana orbits because the magnetic field strength is stronger closer
to the center of the device. These are orbits that when considering cross-sections
of the torus will trace out banana-shaped curves. A sketch of this is shown in
figure 1.8.

Another ubiquitous quantity occurring in plasma physics is the adiabatic
invariant. This quantity is related to the magnetic moment by

ωcJ⊥ = µB. (1.44)

There is a second drift related to a non-uniform magnetic field. It is called
the curvature drift and stems from the curvature of magnetic field lines. A
particle following a magnetic field line that is curved will feel a centrifugal force

Fc = −mv2∥
R

R2
, (1.45)
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1.2. PARTICLE PICTURE

Figure 1.8: Sketch of a banana orbit in circular cross-section tokamak. The
magnetic mirror effect occurs because the magnetic field is larger on the inside
of the torus.

Figure 1.9: Sketch of a particle following a curved magnetic field line.

where R is the radius vector pointing inward to the center of the magnetic field
curve from the particle as sketched in figure 1.9. Here, R/R2 represents the
curvature usually written as κ. For a curved magnetic field, this vector is given
by

κ = h · ∇h. (1.46)

The curvature drift is then given by

Curvature drift

vκ = −
v2∥

ωc

κ×B

B
. (1.47)

This drift again depends on the sign of the charge via ωc. Also, curvature
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1.3. FROM PARTICLES TO PLASMA

Figure 1.10: Illustration of the quasineutrality with a zoom to the Debye length
scale.

drift can only appear if there is a gradient in the magnetic field strength. Hence,
curvature drift only occurs if also gradient drifts are present.

Note that there are further drifts, for example the polarization drift that
occurs due to a time dependence in the electric field or a finite Larmor radius
addition to the E×B drift due to a non-uniform electric field. However, we will
not consider these drifts here. For more information, see any standard plasma
physics text book, e.g. [7, 1].

1.3 From particles to plasma

As mentioned in the introduction, a plasma is a partially or fully ionized gas
and so it is comprised of many charged particles. Up to this point we discussed
the motion of a single charged particle in electromagnetic fields. In addition to
the particle behavior of the plasma, it shows collective effects that are absent
in neutral gases. Therefore, let’s talk now about the plasma as a whole and the
collectivity.

1.3.1 Collective behavior

An assumption we usually make about plasma is quasineutrality. In other
words, we assume the plasma to be always overall neutral. Hence,∑

σ

Zσenσ = 0, (1.48)

where nσ = nσ(x, t) is the particle density of species σ giving the number of
particles per volume. For an electron-ion plasma for instance, this would be

Zieni − ene = 0⇒ Zini = ne. (1.49)

Neutrality, because the plasma is overall neutral, but it is only ”quasi” because
on small scales the condition is not fulfilled.
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1.3. FROM PARTICLES TO PLASMA

The spatial scale on which the neutrality condition is not fulfilled anymore
is given by the Debye length. This length is determined by the electrostatic
potential created by a single charge Zte that is surrounded by other charges, as
illustrated in figure 1.10. Without giving the explicit derivation which can be
found elsewhere [7], the spherically symmetric potential is given by

Φ(r) =
Zte

r
e
− r

λD , (1.50)

where Zσ is the charge number of the single charge surrounded by the other
charges, and

λD =

(∑
σ

4πnσ(Zσe)
2

Tσ

)−1/2

(1.51)

is the Debye length. Here, Tσ is the temperature of the species. The po-
tential (1.50) tells us two things. The first factor gives the typical Coulomb
potential of the test charge. The second factor, however, indicates that charges
are shielded or screened on typical length scales greater than ∼ λD, which is
called Debye shielding. Thus, the quasineutrality assumption is invalid for
length scales shorter than that. In a typical fusion reactor, it is of the order of
10 µm. In astrophysical plasmas, the Debye length can even be in the range of
meters to kilometers.

The time scale on which quasineutrality is restored is given by the plasma
frequency of electrons,

ωpe =

√
4πe2ne

me
. (1.52)

It determines the time scale on which the electrons can balance out a charge
imbalance. For typical fusion plasmas, the frequency is in the range of 1013

rad/s, which is usually the largest frequency. Accordingly, the time scale of
balancing quasineutrality is of the order 10−14 s. The plasma frequency can be
determined by considereing the restoring force of electrons that are shifted out of
quasineutrality from a positive background. Details can be found elsewhere [7,
1].

The Debye length and the plasma frequency are related by the thermal
velocity

λDσωpσ =

√
Tσ

mσ
= vTσ. (1.53)

The thermal velocity of electrons in a typical fusion reactor is roughly 1-10% of
the speed of light, while for ions it is much smaller (according to the mass ratio).
Note, that often the thermal velocity is defined as vT =

√
2T/m. Always make

sure to know which definition is used.

1.3.2 Self-consistent particle description of plasma

Now, let’s build a self-consistent model of a plasma in the particle picture.
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1.3. FROM PARTICLES TO PLASMA

Figure 1.11: Time evolution of a single particle in phase space.

First of all, recall that the particle trajectory X(t),V(t) in phase space is
governed by the equations of motion

Ẋ(t) = V(t), (1.54)

V̇(t) =
Zσe

mσ

(
E(X(t), t) +

1

c
V(t)×B(X(t), t)

)
, (1.55)

where we use capital letters for a reason that will become apparent in a minute.
Of course, the motion of charged particles in electromagnetic fields that was de-
scribed in the prior section is contained in X(t) and V(t). Every drift discussed
previously occurs in the Lagrangian coordinates of the particle.

In phase space, the particle is described by the

Single particle phase space density

Nσ,1(x,v, t) = δ(x−X(t))δ(v −V(t)), (1.56)

where δ(x−X) = ΠND
j=1δ(xj−Xj) with the number of dimensions ND. Note

that this definition of the particle density is specific for the particle picture. The
kinetic (and fluid) pictures use a different definition which we shall see later.
The ”single particle density” in 2D phase space is sketched in figure 1.11.

A word to the difference in capitalization. The coordinates x and v are
called the Eulerian frame of reference, while X and V are called Lagrangian
frame. The former is a ”stationary” frame, i.e. looking at a fixed point of phase
space from a fixed point of observation. The latter is a ”co-moving” frame, i.e.
it is fixed to a point of phase space that evolves with time, which in this case is
the trajectory of the charged particle.

So far, we only considered the motion of a charged particle in fixed electro-
magnetic fields. However, fields are also generated by the particle itself. On the
one hand, this increases the complexity of the problem manifold, in particular, if
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1.3. FROM PARTICLES TO PLASMA

more than one particle is considered. On the other hand, this is what introduces
the collective behavior of the plasma and makes it so rich in phenomena.

The electromagnetic fields are determined by Maxwell’s equations

Maxwell’s equations

∇ ·E(x, t) = 4πρ(x, t) Gauss’ law, (1.57)

∇ ·B(x, t) = 0 Source-freeness of B, (1.58)

∇×E(x, t) = −1

c

∂B(x, t)

∂t
Faraday’s law, (1.59)

∇×B(x, t) =
4π

c
j(x, t) +

1

c

∂E(x, t)

∂t
Ampere’s law. (1.60)

Here, ρ and j are the charge and current densities. There are two types of
electromagnetic fields: the externally generated ones and the ones provided by
the particle itself. The latter are determined by providing expressions for ρ and
j given the charged particle.

The charge and current densities are given by velocity moments over the
particle density

Charge and current density of a single particle

ρ(x, t) = Zσe

∫
dv3 Nσ,1(x,v, t)

= Zσeδ(x−X(t)) (1.61)

j(x, t) = Zσe

∫
dv3 vNσ,1(x,v, t)

= ZσeV(t)δ(x−X(t)). (1.62)

Together with Maxwell’s equations, these two definitions give a self-consistent
model of a single charged particle in electromagnetic fields.

Generalising to a plasma, i.e. a set of many particles, the main difference lies
in the definition of the phase space particle density. The phase space particle
density is a sum of the single particle density

Nσ(x,v, t) =

Ntot
σ∑

i=1

N i
σ,1(x,v, t) (1.63)

=

Ntot
σ∑

i=1

δ(x−Xi(t))δ(v −Vi(t)), (1.64)

where N tot
σ is the total particle number of the species and i is the index of the
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1.3. FROM PARTICLES TO PLASMA

particle. Of course, the total particle density is given by the sum over species

N(x,v, t) =
∑
σ

Nσ(x,v, t). (1.65)

Similar definitions of the charge and current density lead to a self-consistent set
of equations for the whole plasma.

However, consider a typical fusion plasma with about 1020 charged particles.
In practical applications, we are interested in quantities that we can measure,
like the bulk flow of a plasma or its density. To determine such macroscopic
quantities from the particle picture, we would have to solve for the trajectory
(X(t), V(t)) of every single particle! This is impossible. This is why we need
a different formulation of plasma that still incorporates the particle nature of
plasma but lets us determine macroscopic quantities. Here, kinetic theory comes
into play.
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1.4 Questions Plasma Physics

Introduction

(1.1) What different descriptions of plasma are there? How are they related
conceptually?

(1.2) What is the difficulty of the single particle description?

(1.3) What is the downside of the fluid description?

(1.4) What is the advantage of kinetic theory?

Particle picture

(1.5) What is the Larmor radius and the cyclotron frequency, how are they
related, and why are they important?

(1.6) Explain the motion of a charged particle in constant electric and magnetic
fields.

(1.7) What particle drifts do you know? Explain. How are they generalized?

(1.8) What is an ambipolar drift?

(1.9) What is the magnetic moment?

(1.10) What quantities are conserved for the particle motion?

(1.11) Describe the magnetic mirror effect. What type of orbits arise from this
effect?

The full particle picture of plasma

(1.12) What is the quasineutrality condition? Why is it only ”quasi”?

(1.13) What is Debye shielding?

(1.14) What is the phase space particle density of the particle picture? Explain
its components and the difference between the Eulerian frame and the
Lagrangian frame.

(1.15) What equations are required to self-consistently describe a single particle
in electromagnetic fields?

(1.16) How can this be generalized to more particles?

21



Chapter 2

Kinetic Theory

As mentioned in the introduction, kinetic theory is a description of the distribu-
tion of particles in phase space. In this chapter, we will derive the plasma kinetic
equation, discuss its equilibrium solutions, and introduce some basic concepts
of kinetic plasma waves.

2.1 Plasma kinetic equation

2.1.1 Derivation via the Klimontovich equation

There are multiple possibilities to derive the plasma kinetic equation (for an
extensive derivation consider [7]). Here, we follow a path that seamlessly con-
nects to the previous chapter and is arguably instructive, but is unfortunately
not very rigorous mathematically.

Consider a particle species σ. A number of N tot
σ particles are described in

phase space (x, v) by

Nσ(x,v, t) =

Ntot
σ∑

i=1

δ(x−Xi(t))δ(v −Vi(t)), (2.1)

where the index indicates the particle that follows its trajectory Xi,Vi in 6D
phase space. An example of this ”spiky” particle density is sketched in figure 2.1

Let’s assume that there are no sources of particles, then, the particle density
does not change over time,

dNσ(x,v, t)

dt
= 0. (2.2)
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Figure 2.1: Sketch of the particle density function Nσ(x,v, t) in one spatial
dimension.

Now, we start by evaluating the time derivative

∂Nσ(x,v, t)

∂t
=
∑
i

∂

∂t
(δ(x−Xi(t))δ(v −Vi(t))) (2.3)

=
∑
i

δ(v −Vi(t))
∂

∂t
δ(x−Xi(t)) +

∑
i

δ(x−Xi(t))
∂

∂t
δ(v −Vi(t)).

(2.4)

The time derivative of the Dirac delta can be determined by the chain rule1

∂

∂t
δ(x−Xi(t)) =

∂δ(x−Xi(t))

∂(x−Xi(t))
· ∂(x−Xi(t))

∂t
(2.5)

=
∂δ(x−Xi(t))

∂xj

∂xj

∂(x−Xi(t))k︸ ︷︷ ︸
δjk

(
−∂(Xi)k

∂t

)
(2.6)

=
∂δ(x−Xi(t))

∂x
·
(
−∂Xi

∂t

)
(2.7)

= −Ẋi · ∇xδ(x−Xi(t)), (2.8)

where the Einstein summation convention was used. With this, we can further

1The derivative of the Dirac delta function does only make sense for an integral evaluation
with a compactly supported smooth test function. However, we assume here, that everything
is working fine. In principle, we could multiply the equation with a test function and integrate
over it, which would be fine.

23



2.1. PLASMA KINETIC EQUATION

write the time derivative of the particle density

∂Nσ(x,v, t)

∂t
=
∑
i

δ(v −Vi(t))
∂

∂t
δ(x−Xi(t)) +

∑
i

δ(x−Xi(t))
∂

∂t
δ(v −Vi(t))

(2.9)

= −
∑
i

Ẋi · ∇xδ(x−Xi(t))δ(v −Vi(t))

−
∑
i

V̇i · ∇vδ(x−Xi(t))δ(v −Vi(t)) (2.10)

= −
∑
i

Vi · ∇xδ(x−Xi(t))δ(v −Vi(t))

−
∑
i

Zσe

mσ

(
Em(Xi(t), t) +

1

c
Vi(t)×Bm(Xi(t), t)

)
· ∇vδ(x−Xi(t))δ(v −Vi(t)),

(2.11)

where we have substituted the equations of motion of the single particle for Ẋ
and V̇ (equations (1.54) and (1.55)). Notice that the electromagnetic fields are
evaluated at the position of each individual particle. Also, the electromagnetic
fields are the microscopic fields that are comprised of the external fields and
the fields generated by each particle.

Now, and this is now a less rigorous approach, we can apply the following
property of the Dirac delta

f(b)δ(a− b) = f(a)δ(a− b). (2.12)

This property rigorously is only valid when the Dirac delta is under an integral.
It is likely possible to multiply the equation with a test function and integrate
over it to show that the following result is valid. However, we don’t do that
here and are content with the handwaving approach. Thus, we have

∂Nσ(x,v, t)

∂t

= −
∑
i

Vi · ∇xδ(x−Xi(t))δ(v −Vi(t))

−
∑
i

Zσe

mσ

(
Em(Xi(t), t) +

1

c
Vi(t)×Bm(Xi(t), t)

)
· ∇vδ(x−Xi(t))δ(v −Vi(t))

(2.13)

= −
∑
i

v · ∇xδ(x−Xi(t))δ(v −Vi(t))

−
∑
i

Zσe

mσ

(
Em(x, t) +

1

c
v ×Bm(x, t)

)
· ∇vδ(x−Xi(t))δ(v −Vi(t))

(2.14)
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= −v · ∇x

∑
i

δ(x−Xi(t))δ(v −Vi(t))

− Zσe

mσ

(
Em(x, t) +

1

c
v ×Bm(x, t)

)
· ∇v

∑
i

δ(x−Xi(t))δ(v −Vi(t))

(2.15)

= −v · ∇xNσ(x,v, t)−
Zσe

mσ

(
Em(x, t) +

1

c
v ×Bm(x, t)

)
· ∇vNσ(x,v, t),

(2.16)

and we finally arrive at

Klimontovich’s equation

∂Nσ

∂t
+v·∇xNσ+

Zσe

mσ

(
Em(x, t) +

1

c
v ×Bm(x, t)

)
·∇vNσ = 0. (2.17)

Let’s discuss this equation for a moment. First of all, this equation is still
exact and provides the evolution of the particle density in 6D phase space.
Together with Maxwell’s equations, the Klimontovich equation represents an
exact description of plasma. That is, with the knowledge of the initial positions
and velocities of all the particles, the initial particle density is N(x,v, t = 0)
is given. From this initial particle density, Maxwell’s equations determines the
initial microscopic fields (in addition to possible external fields). However, this
is not practical since the Klimontovich equation contains the phase space tra-
jectory of every single one of the particles. Apart from being too complex to be
solved anyways, we are not interested in this kind of information. Rather, we
care for average properties, for example a long-range electric field. In this sense,
the Klimontovich is most useful as the starting point for deriving an equation
describing average properties of the plasma.

To get to such an ”averaged” description, let’s consider the particle density
Nσ for a moment. It tells us if a particle (with infinite density) can be found at
point (x,v) in phase space. Hence, at every point in phase space where a particle
can be found, there is a Dirac-delta spike in Nσ. A more practical approach
is to ask the question how many particles are likely to be found in a unit of
phase space volume dxdv centered around x,v. This requires an ensemble
averaging of the particle density,

fσ(x,v, t) = ⟨N(x,v, t)⟩. (2.18)

That is, an averaging over infinite realizations of the plasma which is prepared
according to some description [7].

The quantity fσ(x,v, t) is called (phase space or particle) distribution
function. As its name says, it tells us about how the particles are distributed
over phase space. An illustration of the particle density function and the re-
sulting ensemble average is sketched in figure 2.2. The number of particles of
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2.1. PLASMA KINETIC EQUATION

Figure 2.2: Sketch of the particle density function Nσ(x,v, t) in one spatial
dimension and the resulting ensemble average.

species σ at time t in the unit of phase space volume given by x to x+∆x and
v to v +∆v is given by

dNσ = fσ(x,v, t)dxdv. (2.19)

From this, the unit of f is s3cm−6. It is clear, that f has to be finite, contin-
uous and positive for all values of t. Moreover, in homogeneous plasma, f is
independent of x, and for isotropic plasma, f is independent of the direction of
v, while in anisotropic plasma f will depend on the orientation of v.

To arrive at an equation that governs the dynamics of the distribution func-
tion we ensemble average Klimontovich’s equation. However, care has to be
taken because the particle density as well as the microscopic electromagnetic
fields are not equal to their ensemble averages but they are affected by fluctua-
tions. Therefore, we have to write

Nσ(x,v, t) = fσ(x,v, t) + δNσ(x,v, t), (2.20)

Em(x, t) = E(x, t) + δE(x, t) (2.21)

Bm(x, t) = B(x, t) + δB(x, t). (2.22)

Here, E = ⟨Em⟩ and B = ⟨Bm⟩ are the ensemble-averaged, or macroscopic
fields and δNσ, δE and δB are the fluctuations. It holds that ⟨δNσ⟩ = ⟨δE⟩ =
⟨δB⟩ = 0.

Let’s average Klimontovich’s equation,

∂⟨Nσ⟩
∂t

+ v · ∇⟨Nσ⟩+
Zσe

mσ

〈(
Em +

1

c
v ×Bm

)
· ∇vNσ

〉
= 0. (2.23)

Evaluating the Lorentz force term has to be done with care. Since the averaging
operation is linear, let’s just consider the electric field term first,

⟨Em · ∇vNσ⟩ = ⟨(E+ δE) · ∇v(fσ + δNσ)⟩ (2.24)

= ⟨E · ∇vfσ + δE · ∇vfσ +E · ∇vδNσ + δE · ∇vδNσ⟩. (2.25)
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Here, the second and third terms vanish, since the ensemble average has no
effect on the already averaged quantities and the average over the fluctuation
vanishes. Thus,

⟨Em · ∇vNσ⟩ = ⟨E · ∇vfσ + δE · ∇vδNσ⟩ (2.26)

= E · ∇vfσ + ⟨δE · ∇vδNσ⟩. (2.27)

A similar result can be obtained for the magnetic field term,

⟨v ×Bm · ∇vNσ⟩ = v ×B · ∇vfσ + ⟨v × δB · ∇vδNσ⟩. (2.28)

Finally, we arrive at the sought-after

Plasma kinetic equation

∂fσ
∂t

+ v · ∇fσ +
Zσe

mσ

(
E+

1

c
v×B

)
· ∇vfσ

= −Zσe

mσ

〈
(δE+

1

c
v × δB) · ∇vδNσ

〉
.

(2.29)

This equation is also called the Vlasov-Boltzmann equation. It governs the
evolution of the distribution function in 6D phase space. The left hand side
of the equation varies only smoothly in phase space and governs the collective
behavior of the plasma represented by the macroscopic electromagnetic fields.
The right hand side, however, is susceptible to the discrete-particle nature of the
plasma and quantifies collisions, which is represented by the fluctuations in the
electromagnetic fields. Often, the right hand side is abbreviated as (∂f/∂t)coll..

2.2 Vlasov equation

We will come back to collisions in section 2.5. For now, we neglect the right
hand side. In this case, we have the

Vlasov equation

∂fσ
∂t

+ v · ∇fσ +
Zσe

mσ

(
E+

1

c
v ×B

)
· ∇vfσ = 0, (2.30)

or collisionless Boltzmann equation. This equation is rich in phenomenology
and we will spend a great deal investigating it. Neglecting collisions is very well
justified if the collision frequency is small compared to typical frequencies of
the collective behavior. Since the collision frequency decreases with increasing
temperature this is often a reasonable assumption for fusion-relevant plasmas
which have high temperatures.
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The fields E and B appearing in the Vlasov equation are the averaged fields.
They must satisfy Maxwell’s equations

∇ ·E(x, t) = 4πρ(x, t), (2.31)

∇ ·B(x, t) = 0, (2.32)

∇×E(x, t) = −1

c

∂B(x, t)

∂t
, (2.33)

∇×B(x, t) =
4π

c
j+

1

c

∂E

∂t
. (2.34)

Here, the charge and current densities are the averaged versions of the mi-
croscopic ones, i.e. they are given by velocity moments over the distribution
function

ρ(x, t) = ⟨ρm⟩ =
∑
σ

Zσe

∫
d3v fσ(x,v, t), (2.35)

j(x, t) = ⟨jm⟩ =
∑
σ

Zσe

∫
d3v vfσ(x,v, t). (2.36)

All in all, the Vlasov equation (2.30), Maxwell’s equations and the charge and
current density definitions represent a closed set of equations that govern the
evolution of the plasma.

Interpretation of the Vlasov equation as flow in phase space
The Vlasov equation can be thought of as the flow of an incompressible fluid in
phase space. In that regard, the distribution function fσ can be thought of as a
probability density. Since particles are neither created nor destroyed, the fluid
must satisfy a continuity equation

∂fσ(x,v, t)

∂t
+∇x ·

(
dx

dt

∣∣∣∣
orbit

fσ(x,v, t)

)
+∇v ·

(
dv

dt

∣∣∣∣
orbit

fσ(x,v, t)

)
= 0,

(2.37)
where d/dt|orbit indicates the time derivative with respect to the orbit of the
fluid element. To make the resemblance to the continuity equation clear, we
introduce the 6D phase space coordinates z = (x,v) and write the equation as

∂fσ(z, t)

∂t
+∇z ·

(
dz

dt

∣∣∣∣
orbit

fσ(z, t)

)
= 0. (2.38)

However, the ”fluid” represents the probability density of particles and,
hence, the orbit of the fluid element must be the same as the orbit of a particle.
Thus,

dx

dt

∣∣∣∣
orbit

= v (2.39)

dv

dt

∣∣∣∣
orbit

=
Zσe

mσ

(
E+

1

c
v ×B

)
, (2.40)

and we again arrive at the Vlasov equation (2.30).
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From the distribution function to macroscopic quantities
When experiments are conducted, quantities like the particle density or temper-
ature are measured. How is the distribution function related to these quantities?
By taking moments over velocity space. For instance, the particle density is de-
fined by

nσ(x, t) =

∫
d3v fσ(x,v, t). (2.41)

Further quantities will occur down the road. In section 2.4, we derive the
macroscopic fluid description from kinetic theory, which is based on building
moments of Vlasov’s equation.

2.2.1 Equilibrium solution of the Vlasov equation

Often, when working with the Vlasov equation, we need to know the equilibrium
solution, that is the solution in a steady-state (∂tf = 0). The Vlasov equation
can determine solutions of the plasma kinetic equation for time scales that is
short compared to the collision time. Note to keep in mind that the equilibrium
solution is not necessarily stable. In the following, we discuss a general property
of the equilibrium solution and examine a few examples.

Consider the Vlasov equation in terms of a total time derivative along a
particle orbit determined by the Lorentz force (for now we omit the species
index)

Df(x,v, t)

Dt
=

∂f

∂t
+

dX(t)

dt
· ∇xf +

dV(t)

dt
· ∇vf (2.42)

=
∂f

∂t
+

dx

dt

∣∣∣∣
orbit

· ∇xf +
dv

dt

∣∣∣∣
orbit

· ∇vf (2.43)

=
∂f

∂t
+ v · ∇f +

Ze

m

(
E+

1

c
v ×B

)
· ∇vf

= 0. (2.44)

This derivative along a particle orbit is often called convective derivative.
If, along the orbit, there are conserved quantities Ci(x,v, t), i.e. constants of
motion, we can construct solutions to the Vlasov equation as [7]

D

Dt
f({Ci(x,v, t)}) =

∑
i

∂f

∂Ci

DCi

Dt
= 0, (2.45)

since for the constants of motions it holds that DCi/Dt = 0. Therefore, any
distribution function that depends only on the constants of motion of individual
particle orbits solves Vlasov’s equations.

29



2.2. VLASOV EQUATION

Examples

• E = B = 0: In this case, the particle is not subject to acceleration, i.e.
v̇ = 0. As conserved quantities we have

H =
mv2

2
(2.46)

p = mv, (2.47)

i.e. the energy and momentum of the particle. Thus, the solution to
Vlasov’s equation is

f = f(vx, vy, vz). (2.48)

We can easily check this since

v · ∇f = 0, (2.49)

which is the only term left in this case.

• E = 0, B = Bez: In this case, the constants of motion are the perpendic-
ular energy (or magnetic moment) and the momentum in z direction,

W⊥ =
mv2⊥
2

= µB, (2.50)

pz = mvz. (2.51)

The equilibrium distribution function is thus

f = f(v⊥, vz). (2.52)

Let’s check this.

0 = v · ∇f(v⊥, vz) +
Ze

mc
v ×B · ∇vf(v⊥, vz) (2.53)

= ωcv⊥ · ∇vf (2.54)

= ωc

(
vy

∂v⊥
∂vx

∂f

∂v⊥
− vx

∂v⊥
∂vy

∂f

∂v⊥

)
(2.55)

= ωc

(
vyvx
v⊥

∂f

∂v⊥
− vxvy

v⊥

∂f

∂v⊥

)
(2.56)

= 0, (2.57)

where v⊥ = v × h = (vy,−vx, 0) and h = B/B is the direction of the
magnetic field.

• B = 0, E = E(x) ̸= 0: If we have an electric field, e.g. one in x direction
E = −exdΦ(x)/dx, the constants of motion are

py = mvy (2.58)

pz = mvz (2.59)

Hx =
mv2x
2

+ ZeΦ(x), (2.60)
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and the equilibrium distribution function is

f = f(v2x + 2ZeΦ/m, vy, vz). (2.61)

Let’s check this. The relevant terms of the Vlasov equation are

v · ∇f + v̇ · ∇vf =

vx
∂

∂x
f(v2x + 2ZeΦ(x)/m, vy, vz) +

Ze

m
E · ∇vf(v

2
x + 2ZeΦ(x)/m, vy, vz)

(2.62)

= vx
∂Φ

∂x

∂

∂Φ
f(v2x + 2ZeΦ(x)/m, vy, vz)

− Ze

m

∂Φ

∂x

∂

∂vx
f(v2x + 2ZeΦ(x)/m, vy, vz). (2.63)

Now, let us introduce a utility variable

qx = v2x + 2ZeΦ, (2.64)

with the derivatives

∂qx
∂Φ

=
2Ze

m
, (2.65)

∂qx
∂vx

= 2vx. (2.66)

Then, we can continue

vx
∂Φ

∂x

∂

∂Φ
f − Ze

m

∂Φ

∂x

∂

∂vx
f = vx

∂Φ

∂x

∂qx
∂Φ

∂

∂qx
f − Ze

m

∂Φ

∂x

∂qx
∂vx

∂

∂qx
f (2.67)

= vx
∂Φ

∂x

2Ze

m

∂

∂qx
f − Ze

m

∂Φ

∂x
2vx

∂

∂qx
f (2.68)

= 0. (2.69)

• We could also write a solution based on the adiabatic invariant introduced
in section 1.2.2. This is often done in the area of magnetic confinement
fusion.

Maxwell-Boltzmann distribution

A prime example of a solution to the plasma kinetic equation that is often used
in practice is the Maxwell-Boltzmann distribution. It describes the spread of
velocities in thermal equilibrium. The Maxwell distribution, or just Maxwellian,
is given by

Maxwell distribution

fM (v) = n

(
m

2πkBT

)3/2

exp

(
− mv2

2kBT

)
. (2.70)
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Figure 2.3: Sketch of a) the Maxwell distribution function fM (v) and b) a
drifting Maxwellian in one spatial dimension.

Here, kB is the Boltzmann constant, n is the macroscopic particle density and
T is the temperature. Often, kB is absorbed into T , which we also do henceforth.
Note that the exponent of the bracket varies for different dimensions. Other ver-
sions of the distribution function might be drifting (f ∼ exp(−m(v−u)2/(2T )),
or including an electric field (f ∼ exp(−(mv2/2 + ZeΦ)/T )). A sketch of the
Maxwell distribution is shown in figure 2.3a) and of the drifting Maxwellian
in b). The spread of the Gaussian curve of the Maxwellian is defined by the
thermal velocity

vT =

√
T

m
, (2.71)

that is, the higher the temperature, the larger the spread.
There is also the possibility, that a plasma is only locally in thermal equi-

librium but not globally. This is often the case in fusion plasmas. In this
situation, the Maxwellian is local,

fM (x,v) = n(x)

(
m

2πkBT (x)

)ND/2

exp

(
− mv2

2kBT (x)

)
. (2.72)

It is also often the case, that the different species in a plasma might be in
thermal equilibrium within the species, but not with other species. Hence, the
temperature is different for the species, i.e. Ti ̸= Te.

In the case of spherical symmetry in velocity space (i.e. no preferred direc-
tion), we can integrate the angles of the volume element dΩ = sin θdθdϕ, which

gives 4π. In terms of the speed v =
√
v2x + v2y + v2z , the distribution function is

then given by

f(x, v, t) = 4πn(x)

(
m

2πT (x)

)ND

v2 exp

(
− mv2

2T (x)

)
. (2.73)

In fluid theory, it is assumed that the velocity distribution of the plasma
is Maxwellian. This means, that fluid theory neglects effects that depend on
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variation in the velocity space distribution. For example, including such effects
results in the process of Landau damping which is a particle-wave interaction
that damps the electro(magnetic) wave by accelerating and decelerating the
particles. This will be discussed in more detail in section 2.3.4

2.3 Linear kinetic plasma waves

Linear plasma waves result from a response to small perturbations. The study
of plasma waves is an important topic and interesting in itself. It shows how
ions, electrons and electromagnetic fields respond differently to a perturbation
with the same frequency. In fusion plasmas, they can be used for plasma heat-
ing, current drive, diagnostics, or stability control. However, apart from this
useful controlled applications, unwanted effects of plasma waves can lead to in-
stabilities. Hence, since plasma waves are truly ubiquitous, we are well advised
to study them.

The fluid description of plasma also describes waves. However, since it av-
erages out the velocity space, it neglects certain effects. For example, the reso-
nant wave-particle interaction that results in Landau damping (treated in sec-
tion 2.3.4), the damping of an electrostatic wave by accelerating particles, does
not occur in the fluid description. Nevertheless, fluid theory is well applicable for
waves with long wavelengths and low frequency where collisions and collective
effects dominate. Consequently, kinetic theory is essential in short-wavelength
waves where individual particle dynamics are important.

We will not head on dive into the rabbit hole of plasma waves. Rather, we
will dip a toe into a few selected topics that demonstrate important concepts
which serves as a base camp from which further exploration into the topic can
be started. Most notably, we start with the simplest type of waves, cold plasma
waves, in section 2.3.1. This section provides an introduction into the concepts of
the dielectric tensor, the conductivity tensor, dispersion relation and so on. Also,
it will provide insights into the most prominent plasma waves like Langmuir
waves, electron cyclotron wave, whistler wave and more. Then, in section 2.3.2
we loose the assumption of a cold plasma and investigate electrostatic waves
and determine the next order correction to Langmuir waves in section 2.3.3.
Furthermore, in section 2.3.4 we encounter the prime example of the impact of
kinetic theory on plasma waves: Landau damping.

2.3.1 Cold plasma waves

Assumptions

We begin by specifying some basic assumptions. First, we assume a homoge-
neous steady-state plasma, that is, the distribution function does not depend
on space, f = f(v). Further, we linearize the distribution function and the
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electromagnetic fields. Hence, we perturb a homogeneous background as

f(x,v, t) = f0(v) + δf(x,v, t) (2.74)

E(x, t) = δE(x, t) (2.75)

B(x, t) = B0 + δB(x, t). (2.76)

Note that we ignore an equilibrium term in the electric field since an electric
field can only be present in the perpendicular direction and we are always free
to go to a moving reference frame with velocity vE = B−1

0 E0 × B0 in which
E0 = 0. Further, we assume that the perturbation is small, implying that

f0 ≫ δf, |E0| ≫ |δE|, |B0| ≫ |δB|. (2.77)

Also, since we are only interested in linear perturbations we ignore all terms
that are of higher order in the perturbation, e.g. δf2, δfδE, etc. These would
lead to non-linear effects.

A wave solution is retrieved by casting the perturbations in the form

δf(x,v, t) = f̃k(v)e
ik·x−iωt (2.78)

δE(x, t) = Ẽke
ik·x−iωt (2.79)

δB(x, t) = B̃ke
ik·x−iωt. (2.80)

In the following, we suppress the index k of the wave amplitude for brevety.
But, keep in mind that the amplitude is specific for each wave vector k.

Cold means that the particles do not have kinetic thermal motion on their
own, that is, the phase velocity of the plasma is much larger than the typical
speed of a particle [8],

Cold plasma assumption

vp =
ω

k
≫ vTσ (2.81)

for all species σ. This condition implies that all the particles experience the
same EM fields. In the other case, that the phase velocity is comparable to the
thermal velocity, some particles can leave the wave behind and will see different
fields. More about that in section 2.3.4.

When considering waves, what is it that we actually want to determine? A
central quantity specifying properties of waves is the dispersion relation. It
relates the frequency of the wave with the wavelength and tells us how waves
with different frequencies travel with different speeds. Also, different kinds
of plasma waves, that have different effects like heating or destabilizing, are
distinguished by their dispersion relation.

Some further basics about waves can be found in appendix B.
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General discussion about the dispersion relation

Using the monochromatic plane wave ansatz, we can write Faraday’s law

∇× δE = −1

c

∂

∂t
δB (2.82)

k× Ẽ =
iω

c
B̃⇒ B̃ =

c

ω
k× Ẽ, (2.83)

and Ampere’s law

∇× δB =
4π

c
δJ+

1

c

∂

∂t
δE (2.84)

k× B̃ = − i4π

c
J̃− ω

c
Ẽ, (2.85)

as algebraic equations. Inserting the magnetic field from Faraday’s law into
Ampere’s law, we have

k× (k× Ẽ) = − i4πω

c2
J̃− ω2

c2
Ẽ (2.86)

which is a wave equation for Ẽ. Note that there is an inhomogeneous part to the
usual wave equation of the vacuum given by J̃. This term represents the medium
(the plasma) in which the wave propagates. Without that term, we would have
a wave with phase velocity vp = c. However, due to this inhomogeneity, we have
a wave for which the phase velocity is reduced,

vp =
c

n
, (2.87)

where n is the index of refraction. From electrodynamics (see e.g. [3]), we
recall that

n2 =
εµ

ε0µ0
= εrµr ≈ εr (2.88)

where ε is the permittivity, µ the permeability and εr is the dielectric ”constant”.
In plasma, the relative permeability stays close to 1. Further εr > 1, implying
that light in matter moves slower than with the speed of light. In general, the
dielectric coefficient is not constant, this is in particular true for magnetized
plasma in which it is a tensor.

Let’s find the dielectric tensor in a general way. We start by relating the
current density perturbation and the electric field perturbation as

J̃ = σ · Ẽ, (2.89)

where σ is the conductivity tensor. This relation is Ohm’s law and this type
of relation is also called constitutive relation since it relates a material quantity
with a field. Plugging this back into equation (2.86), we get

c2

ω2
k× (k× Ẽ) = −Ẽ− i4π

ω
σ · Ẽ (2.90)

= −ε · Ẽ. (2.91)
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Here, we introduced the dielectric tensor

ε = 1 +
i4π

ω
σ, (2.92)

where 1 is the unit tensor. How is the dielectric tensor related to the refraction
index? Let’s get back to the wave equation

0 =
c2

ω2
k× (k× Ẽ) + ε · Ẽ (2.93)

BAC−CAB
=

[
c2

ω2
(kk− k21) + ε

]
· Ẽ (2.94)

=

[
c2k2

ω2
(k̂k̂− 1) + ε

]
· Ẽ, (2.95)

where k̂ = k/k is the direction of the wave vector. This equation has the trivial
solution Ẽ = 0, which is of course not interesting. The interesting solution is
found if the other part of the equation is singular,

Dispersion equation

det

[
c2k2

ω2
(k̂k̂− 1) + ε

]
= 0. (2.96)

Solving this equation gives the dispersion relation, i.e. ω as a function of
k, depending on the wave direction k̂ and the plasma properties contained in
ε. If a plasma is subjected to a perturbation from an antenna with a certain
frequency and direction, the plasma responds and will decide k which also allows
concluding on the phase velocity [8]. Recall, that the refraction index relates
the phase velocity with the speed of light,

n =
c

vp
=

ck

ω
. (2.97)

Thus,

det
[
n2(k̂k̂− 1) + ε

]
= 0, (2.98)

can also be thought as an equation to determine the index of refraction.
Once the dispersion equation is solved, equation (2.95) gives information

about the direction of Ẽ. The magnitude of Ẽ, however, is not determined by
this equation. It is rather defined by the boundary conditions at the antenna.

Dispersion relation excursion: The dispersion relation describes the re-
lation between the frequency and wavenumber of a wave, i.e. ω(k). In dis-
persive media, like a plasma, waves with different frequencies will propagate
with different phase velocities. As described above, the phase velocity, given by
vp = ω(k)/k is determined by the dispersion relation. Further, the dispersion
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Figure 2.4: Sketch of a linear wave.

relation determines the group velocity, vg = ∂ω/∂k. The group velocity is also
often thought of the velocity at which the energy of the wave is transported.
However, this is not always accurate.

Further, the dispersion relation infers on which types of waves can exist.
It helps distinguish different modes (waves) and their respective frequency
ranges. In that respect, different types of waves only occur for certain frequency
ranges. Also, the imaginary part of the dispersion relation, i.e. ℑ(ω(k)), indi-
cates the stability of the wave. A wave can either be unstable (exponential
growth), stable (decay or damping) or it remains constant.

As a trivial example, consider the disperion relation of light waves in vacuum

ω = ck. (2.99)

In this case, we have

vp =
ω

k
= c, (2.100)

vg =
∂ω(k)

∂k
= c. (2.101)

Hence, for light waves in vacuum, the phase and group velocity are equal.
But what does the dispersion relation tell us? Consider the plane wave

ansatz for an electric field in one dimension

E(x, t) = E0 + Ẽei(kx−ω(k)t), (2.102)

where E0 is a possible background field that existed prior to the perturbation.
For simplicity, assume it constant. Let’s further assume, that we turn the
perturbation on at t0 = 0. Then, the electric field is

E(x, 0) = E0 + Ẽeikx. (2.103)

This is sketched in figure 2.4. At this point, the electric field is given by a
constant term and a small modulation in space. Now, going further to a time
point t1 the wave is spatially shifted by ω(k)t1. The velocity at which the peaks
and troughs are moving is the phase velocity vp = ω(k)/k. Here, we assumed a
monochromatic wave that is determined by a single wavenumber k. In general,
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Figure 2.5: Plot of a plane wave in one dimension where the dispersion relation
is local, i.e. ω = ω(k, x).

a wave can be composed of multiple wavenumbers, i.e. a wave packet. The wave
packet is a superposition of monochromatic waves with different wavenumbers.
The group velocity is then the velocity at which the wave packet moves.

If the dispersive medium in which the wave oscillates is inhomogeneous,
the dispersion relation will in general be local, i.e. ω = ω(k, x). That is, de-
pending on the local parameters like density or temperature in a plasma, the
wave will propagate with different phase velocities. This is sketched in figure 2.5.
The blue line indicates the wave at t0 = 0. The orange line shows the wave for
a later time step with a dispersion relation independent on space. Finally, the
green line is the case that ω(k) = k cos(x), i.e. it depends on space.

There are four different types of dispersion relations:

• ω ̸= ω(k), dispersive2: Oscillating but not propagating. The group veloc-
ity is zero. (The wave packet does not move.)

• ω(k) ∝ k, non-dispersive: Group and phase velocity are equal. The indi-
vidual waves of a packet move with the whole packet at the same speed.

• ω(k) = ak + b, dispersive, linear dependence: Group and phase velocity
are different. The individual waves of a packet move with different speeds.

• ω(k), dispersive, non-linear: Group and phase velocity are different and
depend on k. The individual waves of a packet move with different speeds
and the packet shape changes and gets distorted.

Dielectric tensor derived from Vlasov’s equation

In the following, we will derive the dielectric tensor for cold plasma waves from
the Vlasov equation and discuss the type of waves that follow. To get the

2Dispersive refers to the dependency of the phase velocity on the wavenumber. If it depends
on the wave number, it is dispersive.
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dielectric tensor we determine the conductivity tensor. For this, we have to get
the current density perturbation,

δj =
∑
σ

ZσeδΓσ, (2.104)

which is defined via the flow

δΓσ =

∫
d3v vδfσ. (2.105)

Hence, to determine the perturbation of the flow, we need to consider the per-
turbation of the distribution function. The linear perturbation of the particle
distribution function δf is governed by the linearized Vlasov equation, i.e. in-
serting the linear expansion of the distribution function and fields in the Vlasov
equation

0 =
∂fσ
∂t

+ v · ∇fσ +
Zσe

mσ

(
E+

1

c
v ×B

)
· ∇vfσ (2.106)

=
�
�
�∂fσ,0

∂t
+

∂δfσ
∂t

+ v ·���∇fσ,0 + v · ∇δfσ

+
Zσe

mσ

(
δE+

1

c
v × (B0 + δB)

)
· ∇v(fσ,0 + δfσ). (2.107)

As mentioned before, we neglect terms of second order in the perturbation.
Further, since the equilibrium distribution function is constant in time and
homogeneous, the respective terms vanish. Hence, we have

∂δfσ
∂t

+ v · ∇δfσ +
Zσe

mσc
(v ×B0) · ∇vδfσ = −Zσe

mσ
(δE+

1

c
v × δB) · ∇vfσ,0.

(2.108)

We can further neglect some terms by comparing their relative magnitude

∂tδf ∼ ωδf, (2.109)

v · ∇δf ∼ vT kδf, (2.110)

v × δB ∼ vT δB ∼ vt
k

ω
δE. (2.111)

Since we assumed a cold plasma, vt ≪ ω/k, the terms (2.110) and (2.111) are
small compared to the first one 3. Hence, we neglect them and arrive at

∂δfσ
∂t

+
Zσe

mσc
(v ×B0) · ∇vδfσ = −Zσe

mσ
δE · ∇vfσ,0. (2.112)

3The magnetic field perturbation magnitude can be estimated by the electric field pertur-
bation magnitude using Faraday’s law.
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We proceed by multiplying the equation with v and integrating over velocity
space. By partial integration of the two terms on the right, we arrive at

∂δΓσ

∂t
− ωcσδΓσ × h =

Zσe

mσ
nσδE. (2.113)

Here, ωcσ = ZσeB0/(mσc) is the cyclotron frequency, h = B0/B0 is the mag-
netic field direction and nσ =

∫
d3vf0 is the particle density. This is an equation

determining the time evolution of the particle flow, and essentially the current
density. Hence, we need to solve it to eventually get an expression for the
conductivity tensor provided by Ohm’s law.

Since we are interested in waves, we insert the monochromatic wave ansatz
and get

−iωΓ̃σ − ωcσΓ̃σ × h =
Zσe

mσ
nσẼ. (2.114)

To solve this equation for Γ̃σ we introduce a coordinate system that is aligned
to the magnetic field,

e1 =
Ẽ⊥

Ẽ⊥
, e2 = h× e1, e3 = h, (2.115)

where Ẽ⊥ is the electric field perpendicular to the magnetic field. By multiplying
equation (2.114) with each basis vector, we can write the equation as a matrix
vector equation. Multiplying with the first basis vector gives

−iωΓ̃ · e1 − ωcσ(Γ̃× h) · e1 =
Zσe

mσ
nσẼ · e1 (2.116)

−iωΓ̃ · e1 + ωcσΓ̃ · (e1 × h) =
Zσe

mσ
nσẼ⊥ (2.117)

−iωΓ̃ · e1 − ωcσΓ̃ · e2 =
Zσe

mσ
nσẼ⊥. (2.118)

This can be repeated with the other two basis vectors. Then, we have the matrix
vector equation−iω −ωcσ 0

ωcσ −iω 0
0 0 −iω

 ·
Γ̃σ · e1
Γ̃σ · e2
Γ̃σ · e3

 =
Zσe

mσ
nσ

Ẽ⊥
0

Ẽ∥

 . (2.119)

This equation is solved by matrix inversion (e.g. gaussian elimination, Cayley-
Hamilton, etc.). The solution isΓ̃σ · e1

Γ̃σ · e2
Γ̃σ · e3

 =
Zσenσ

mσ

i

ω(ω2 − ω2
cσ)

 ω2Ẽ⊥
−iωωcσẼ⊥

(ω2 − ω2
cσ)Ẽ∥

 . (2.120)

Or in vector notation

Γ̃σ =
Zσenσ

mσ
iω

(
1

ω2 − ω2
cσ

Ẽ⊥ +
1

ω2
(Ẽ · h)h− iωcσ

ω(ω2 − ω2
cσ)

h× Ẽ

)
. (2.121)
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Now we have got the particle flow as a function of the electric field perturbation.
In fact, this is a linear relation and we can write the current density as

J̃ =
∑
σ

ZσeΓ̃σ = σ · Ẽ. (2.122)

We see that we can simply ”read off” the conductivity tensor since we know
the particle flow. To do so, we realize, that we can write the different vectors
occurring in the particle flow as matrix vector products. In particular

Ẽ⊥ = Ẽ− Ẽ∥ (2.123)

= Ẽ− h(h · Ẽ) (2.124)

= (1− hh)︸ ︷︷ ︸
matrix

· Ẽ︸︷︷︸
vector

. (2.125)

Thus, the conductivity operator is

σ = i
ω

4π

∑
σ

(
ω2
pσ

ω2 − ω2
cσ

(1− hh) +
ω2
pσ

ω2
hh−

iω2
pσωcσ

ω(ω2 − ω2
cσ)

h× 1

)
, (2.126)

where ωpσ =
√
Z2
σe

2nσ4π/mσ is the plasma frequency. Note that the last term
is to be understood as

(h× 1)ij = εiklhkδlj = εikjhk. (2.127)

With this expression for the conductivity tensor, we have determined an
expression for the dielectric tensor for cold plasma,

ε = 1 +
i4π

ω
σ. (2.128)

The dielectric tensor is the quantity that contains most of the information.
Essentially, by encapsulating all particles of the plasma, it tells us how the
plasma responds to electric fields depending on the direction, wavenumber and
frequency of the wave. It can tell us if the wave propagates in the plasma, grows
or if it is damped.

Given the expression for the conductivity tensor, it is useful to split the
dielectric tensor into three parts

Dielectric tensor for cold plasma waves

ε = ε⊥(1− hh) + ε∥hh− igh× 1, (2.129)
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with the components

ε⊥ = 1−
∑
σ

ω2
pσ

ω2 − ω2
cσ

, (2.130)

ε∥ = 1−
∑
σ

ω2
pσ

ω2
, (2.131)

g = −
∑
σ

ω2
pσωcσ

ω(ω2 − ω2
cσ)

. (2.132)

It is often useful to distinguish between longitudinal and transverse waves
with respect to the background magnetic field direction. For this purpose, in-
stead of aligning the coordinate system with the electric field and the magnetic
field, we want to swap the electric field for the wave number, i.e. we have
coordinates

x̂ =
k⊥

k⊥
, ŷ = h× x̂, h =

B0

B0
, (2.133)

where k⊥ = k− (k · h)h. In this basis, the dielectric tensor has a nice form 4

ε =

 ε⊥ ig 0
−ig ε⊥ 0
0 0 ε∥

 . (2.134)

The dielectric tensor is clearly anisotropic since ε⊥ ̸= ε∥ and it has gyrotropic
entries ∝ g. The gyrotropicity originates from the magnetic field. If an elec-
tric field propagates through a gyrotropic medium, the field rotates and thus,
the polarization changes. For example, earth’s ionosphere is such a gyrotropic
medium. As such, it affects the propagation of waves which has to be taken
into account in radio and microwave communications with satellites. A linearly
polarized wave traveling through a gyrotropic medium will experience a rota-
tion of the linear polarization orientation. This effect is called Faraday rotation.
Note that the dielectric tensor is Hermitian [8]. Without proving it here, this
makes n2 real.

Recall, that we want to solve the dispersion equation

det
(
n2(k̂k̂− 1) + ε

)
= 0, (2.135)

which gives us the dispersion relation ω(k).
What can we do now that we have determined the dielectric tensor? We can

explore the zoo of plasma waves!

4To show this, multiply(2.129) from left and right with the new basis vectors, which gives
the elements of the matrix.

42



2.3. LINEAR KINETIC PLASMA WAVES

Parallel propagation

Let’s start with waves that propagate along the magnetic field, i.e. k̂ = h. In
this case, the governing equation for the dispersion relation is[

n2(k̂k̂− 1) + ε
]
· Ẽ = 0 (2.136)[

n2(k̂k̂− 1) + ε⊥(1− hh) + ε∥hh− igh× 1
]
· Ẽ = 0 (2.137)[

(ε⊥ − n2)(1− hh) + ε∥hh− igh× 1
]
· Ẽ = 0. (2.138)

Of course, at this point we could just assume the systems of equation to be
singular and solve for n2. However, let’s use a different approach. We multiply
the equation (2.138) with h and obtain

ε∥h · Ẽ = 0. (2.139)

So, for parallel propagation we either have ε∥ = 0 or h · Ẽ = 0. Let’s discuss
them both.

• ε∥ = 0: In this case, the electric field perturbation must be parallel to the

magnetic field Ẽ ∥ h. Also, the wave is electrostatic. Since Ẽ ∝ k, we can
write it in terms of the electrostatic potential,

Ẽ = −ikΦ̃. (2.140)

Further, the curl of the electric field is

∇× Ẽ ∝ B̃ (2.141)

k× Ẽ ∝ k× k = 0 (2.142)

⇒ ∇× Ẽ = 0, (2.143)

and hence, the electric field is static and so is the wave. In the cold plasma
approximation, electrostatic waves can have any value of n [8] since (2.139)
doesn’t constrain it. We can still check what the equation ε∥ = 0 gives.
Assuming a single ion species and an electron species, we have

ε∥ = 1−
∑
σ

ω2
pσ

ω2
(2.144)

= 1−
ω2
pe

ω2

(
1 +

Zime

mi

)
(2.145)

≈ 1−
ω2
pe

ω2
(2.146)

Hence, we have a wave with

ω ≈ ωpe =

√
4πe2ne

me
. (2.147)
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This mode represents electrostatic oscillations along the magnetic field.
These waves are called Langmuir waves. They pose charge oscillations
along the magnetic field and are thus not constrained spatially (arbitrary
k and n). Langmuir waves will occur again later when we consider hot
electrostatic waves in section 2.3.2.

• h · Ẽ = 0: In this case, which is not electrostatic, we have[
(ε⊥ − n2)(1− hh) + ε∥hh− igh× 1

]
· Ẽ = 0 (2.148)

(ε⊥ − n2)Ẽ− igh× Ẽ = 0. (2.149)

This can also be written in matrix vector notation as(
ε⊥ − n2 ig
−ig ε⊥ − n2

)
·
(
Ẽ · x̂
Ẽ · ŷ

)
=

(
0
0

)
. (2.150)

The determinant of this matrix is

det

(
ε⊥ − n2 ig
−ig ε⊥ − n2

)
= (ε⊥ − n2)2 − g2. (2.151)

Setting this to zero, we get

n2 = ε⊥ ± g. (2.152)

This solution corresponds to a polarization of the electric field perturba-
tion that is

Ẽ ∝ x̂∓ iŷ. (2.153)

Since the temporal dependence of the wave is exp(−iωt), the top sign
corresponds to left-handed circular polarization and the bottom sign
to right-handed circular polarization5. Figure 2.6 shows a sketch of
the polarization.

Let’s consider a plasma with only one ion species that has Zi = 1, then

n2 = ε⊥ ± g (2.154)

= 1−
∑
σ

ω2
pσ

ω2 − ω2
cσ

∓
∑
σ

ω2
pσωcσ

ω(ω2 − ω2
cσ)

(2.155)

= 1−
∑
σ

[
ω2
pσ(ω ± ωcσ)

ω(ω2 − ω2
cσ)

]
(2.156)

= 1−
∑
σ

ω2
pσ

ω(ω ∓ ωcσ)
(2.157)

= 1−
ω2
pi

ω(ω ∓ ωci)
−

ω2
pe

ω(ω ± |ωce|)
. (2.158)

5The polarization impacts how waves propagate through the plasma. Waves with differ-
ent polarizations may experience different cutoffs (frequencies where the wave is reflected or
absorbed) and resonances (frequencies where wave-particle interactions become efficient).

44



2.3. LINEAR KINETIC PLASMA WAVES

Figure 2.6: Sketch of the polarization of the electric field perturbation for par-
allel propagation.

Using the fact that

ω2
pe

ω2
pi

=
|ωce|
ωci

⇒ ω2
peωci − ω2

pi|ωce| = 0, (2.159)

we continue with

n2 = 1−
ω2
piω(ω ± |ωce|) + ω2

peω(ω ∓ ωci)

ω2(ω ∓ ωci)(ω ± |ωce|)
(2.160)

=
ω2(ω ∓ ωci)(ω ± |ωce|)− ω2

piω(ω ± |ωce|)− ω2
peω(ω ∓ ωci)

ω2(ω ∓ ωci)(ω ± |ωce|)
(2.161)

(2.159)
=

ω4 ± ω3|ωce| ∓ ω3ωci − ω2ωci|ωce| − ω2
piω

2 − ω2
peω

2

ω2(ω ∓ ωci)(ω ± ωce)
(2.162)

=
ω2 ± (|ωce| − ωci)ω − ωci|ωce| − ω2

pi − ω2
pe

(ω ∓ ωci)(ω ± |ωce|)
. (2.163)

The top sign still corresponds to left-handed polarization and the bottom sign
to right-handed polarization. We introduce now the frequencies

ωL =

√√√√( |ωce|+ ωci

2

)2

+ ω2
pe + ω2

pi −
|ωce| − ωci

2
, (2.164)

ωR =

√√√√( |ωce|+ ωci

2

)2

+ ω2
pe + ω2

pi +
|ωce| − ωci

2
. (2.165)

These definitions simplify the refraction index,

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± |ωce|)(ω ∓ ωci)
. (2.166)

The refraction index can show cut-offs and resonances. The former is a
limit in the perturbation frequency ω above or below which the refraction index
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squared becomes negative, i.e. n2 < 0. Hence, the wave becomes exponentially
decaying and is called evanescent. Cut-offs are defined by the roots of the nu-
merator. A resonance occurs for specific frequencies that result in n2 →∞, i.e.
at roots of the denominator. In this case, already a very small perturbation can
lead to a significant plasma response. E.g. at the electron cyclotron resonance,
the perturbation frequency of the wave matches the frequency of the cyclotron
motion. This allows the particles to efficiently absorb the waves energy.

It is instructive to understand the ordering of the different frequencies ωpe,
ωpi, ωce, ωci, ωL and ωR. Depending on the perturbation frequency ω the wave
is of different type and will follow a different dispersion relation. We know that

ω2
pi

ω2
pe

=
ωci

|ωce|
=

Zime

mi
≪ 1. (2.167)

The relative size of the frequencies is determined by the non-dimensional param-
eter ωpe/|ωce|. In the most interesting cases in astrophysics and fusion physics,
it holds that ωpe/|ωce| ≳ 1, hence

ωL ≃
√

ω2
ce

4
+ ω2

pe −
|ωce|
2

, (2.168)

ωR ≃
√

ω2
ce

4
+ ω2

pe +
|ωce|
2

. (2.169)

This regime, implies an ordering of

ωR > ωpe > ωL ≫ ωci. (2.170)

The frequency missing here is ωce. The relative size of this frequency in com-
parison to ωpe and ωL depends on the exact ratio of ωpe/|ωce|. If we take as an
example ωpe/|ωce| >

√
2, we have

ωR > ωpe > ωL > |ωce| ≫ ωci. (2.171)

With (2.171) and (2.166), and the fact that n2 has to be positive for wave
propagation implies that the left-handed polarization exists if

ω > ωL and ω < ωci, (2.172)

while the right-handed polarization exists for

ω > ωR and ω < ωce. (2.173)

Note that the signs in (2.166) still correspond to left-handed (top sign) and
right-handed (bottom sign) polarization and that the just discussed conditions
for their existence stem from n2 having to be positive.

Following the ordering (2.171), we find the following limits whose relation
are sketched in figure 2.7:
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Figure 2.7: Sketch of the relation between the different waves depending on the
perturbation frequency.

• For ω ≫ ωR, ωL, |ωce|, ωci, we find light

n2 ≈ 1⇒ ω ≈ kc. (2.174)

It can have both left-handed and right-handed polarization.

• For ω ≃ |ωce|, we find the electron cyclotron wave. This wave has to
be right-handed, as otherwise ω − ωL < 0 which results in a negative n2

in (2.166). We have

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± |ωce|)(ω ∓ ωci)
(2.175)

ω≫ωci≈ ω2 − ωωR + ωLω − ωLωR

ω(ω − |ωce|)
(2.176)

(ω − |ωce|)n2 ≃ −ωLωR

ω
(2.177)

= −
ω2
pe

ω
. (2.178)

Where we have used that ωL and ωR are significantly greater than ω.
From this (?), we arrive at

|ωce| − ω ≃
ω2
pe|ωce|
k2c2

≪ 1. (2.179)

• For |ωce| ≫ ω ≫ ωci, we have the whistler wave. This wave can only
have right-handed polarization. Again, this is implied by the sign of n2.
In particular, for the left-handed case, ω+ |ωce| > 0 is in the denominator,
but the nominator has a negative sign due to ω − ωL < 0. However, for
the right-handed case, ω − ωR < 0 in the nominator is negative but so is
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also ω − |ωce| in the denominator and the sign cancels. Hence, we have

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± |ωce|)(ω ∓ ωci)
(2.180)

≈ ω2 + ωLω − ωRω − ωLωR

−|ωce|ω
(2.181)

≈ ωLωR

|ωce|ω
(2.182)

=
ω2
pe

|ωce|ω
(2.183)

⇒ ω =
|ωce|c2k2

ω2
pe

. (2.184)

• For ω ≃ ωci, we have the ion cyclotron wave. This wave has left-handed
polarization. Here, we have

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± |ωce|)(ω ∓ ωci)
(2.185)

≈ −ωLωR

|ωce|(ω − ωci)
(2.186)

(ωci − ω)n2 =
ω2
pe

|ωce|
(2.187)

=
ω2
pi

ωci
. (2.188)

Now, we introduce the Alfvén speed

vA =

√
B2

4πnimi
= c

ωci

ωpi
. (2.189)

With this definition, we have

(ωci − ω)n2 =
ωcic

2

v2A
(2.190)

(ωci − ω) ≃ ωcic
2

v2A
c2k2

ω2
ci

(2.191)

=
ω3
ci

v2Ak
2
≪ 1. (2.192)

• Finally, for ωci, |ωce| ≫ ω, we have Alfvén waves which can be either left-
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or right-handed. In this case,

n2 =
(ω ∓ ωL)(ω ± ωR)

(ω ± |ωce|)(ω ∓ ωci)
(2.193)

≈ −ωLωR

−|ωce|ωci
(2.194)

=
ω2
pe

|ωce|ωci
(2.195)

=
ω2
pi

ω2
ci

(2.196)

=
c2

v2A
⇒ ω ≃ kvA. (2.197)

Perpendicular propagation

In the case that k̂ · h = 0, the equation[
n2(k̂k̂− 1) + ε

]
· Ẽ = 0 (2.198)

becomes [
ε⊥(1− hh)− n2(1− k̂k̂) + ε∥hh− igh× 1

]
· Ẽ = 0. (2.199)

Multiplying this equation with h gives

(ε∥ − n2)h · Ẽ = 0. (2.200)

This equation has two solutions: either ε∥−n2 = 0 or h · Ẽ = 0. They are called
ordinary and extraordinary mode.

Ordinary mode (O-mode): ε∥ − n2 = 0 defines the phase velocity of the
wave. For a plasma with a single ion species and electrons, we have

n2 =
k2c2

ω2
= ε∥ (2.201)

= 1−
ω2
pe

ω2

(
1 +

Zime

mi

)
(2.202)

⇒ ω2 ≈ ω2
pe + k2c2. (2.203)

The dispersion relation of the ordinary wave (O-wave) is the same as for an
unmagnetized plasma, hence, the O-wave does not care about the magnetic
field. Also, the wave has a lower cut-off at ω = ωpe, i.e. frequencies below the
plasma frequency are not allowed. The ordinary mode is linearly polarized and
the electric field is parallel to the magnetic field Ẽ ∥ B0. Therefore, the particles
of the wave are not affected by the magnetic field.
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The O-wave is used for plasma diagnostic to measure the plasma density. A
wave is send through the plasma while a reference wave does not travel through
the plasma (plasma interferometry). The phase difference between the two is a
measure of the plasma density [10].

Extraordinary mode (X-mode): A wave that is elliptically polarized6 and
where the electric field has both parallel and perpendicular components to the
magnetic field.

Assuming h · Ẽ = 0, the equation (2.199) reads[
ε⊥1− n2(1− k̂k̂)− igh× 1

]
· Ẽ = 0. (2.204)

To solve this equation, we again project into the basis (x̂, ŷ,h), with x̂ = k⊥/k⊥,
and ŷ = h× x̂. In this case, we have(

ε⊥ ig
−ig ε⊥ − n2

)
·
(
Ẽ · x̂
Ẽ · ŷ

)
= 0. (2.205)

The polarization of the electric field is

Ẽ ∝ igx̂− ε⊥ŷ. (2.206)

Since the relative magnitude in x̂ and ŷ directions vary, this wave has elliptical
polarization.

The determinant of the matrix has to be zero, hence

n2 = ε⊥ −
g2

ε⊥
(2.207)

=
ε2⊥ − g2

ε⊥
. (2.208)

We determined earlier (equation (2.166)) that

ε⊥ ± g =
(ω ∓ ωL)(ω ± ωR)

(ω ± ωce)(ω ∓ ωci)
. (2.209)

Hence,

ε2⊥ − g2 = (ε⊥ + g)(ε⊥ − g) (2.210)

=
(ω2 − ω2

L)(ω
2 − ω2

R)

(ω2 − ω2
ce)(ω

2 − ω2
ci)

. (2.211)

Also,

ε⊥ = 1−
∑
σ

ω2
pσ

ω2 − ω2
cσ

= 1−
ω2
pe

ω2 − ω2
ce

−
ω2
pi

ω2 − ω2
ci

. (2.212)

6An elliptical polarization is a superposition of two linearly polarized waves where either
the amplitudes are different, or the phase difference between the waves varies. If the phase
difference is 90°, the polarization is circular.
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This can be inserted back into (2.208), and using ω2
piωce = ω2

peωci, we have

n2 =
(ω2 − ω2

L)(ω
2 − ω2

R)

ω4 − (ω2
ce + ω2

ci + ω2
pe + ω2

pi)ω
2 + ω2

ceω
2
ci + ω2

peωci(ωce + ωci)
. (2.213)

This expression can be simplified by introducing the upper hybrid frequency

ω2
UH =

ω2
ce + ω2

ci + ω2
pe + ω2

pi

2

+

√√√√(ω2
ce + ω2

ci + ω2
pe + ω2

pi

2

)2

− ω2
ceω

2
ci − ω2

peωci(ωce + ωci) (2.214)

and the lower hybrid frequency

ω2
LH =

ω2
ce + ω2

ci + ω2
pe + ω2

pi

2

−

√√√√(ω2
ce + ω2

ci + ω2
pe + ω2

pi

2

)2

− ω2
ceω

2
ci − ω2

peωci(ωce + ωci). (2.215)

Then, we have

n2 =
(ω2 − ω2

L)(ω
2 − ω2

R)

(ω2 − ω2
UH)(ω2 − ω2

LH)
. (2.216)

Using ω2
pi/ω

2
pe = ωci/ωce = Zme/mi ≪ 1, we can again infer on the relative

size of ωpe, ωR, ωL, ωLH and ωUH which is determined by the non-dimensional
ratio ωpe/ωce. For ωpe/ωce ≳ 1, we have

ωUH ≃
√
ω2
pe + ω2

ce, (2.217)

ωLH ≃
√

ωciωce

1 + ω2
ce/ω

2
pe

. (2.218)

Therefore,
ωR > ωUH > ωpe > ωL ≫ ωLH . (2.219)

According to (2.213), there are extraordinary waves for ω > ωR, ωL < ω < ωUH ,
and ω < ωLH .

Clearly, equation (2.216) shows two resonances ω = ±ωUH and ω = ±ωLH

which are consequently called upper and lower hybrid resonances.

2.3.2 Finite temperature effects in electrostatic wave dis-
persion

We continue by considering finite temperature effects in linear plasma waves.
The simplest type of wave where these effects manifest is Langmuir waves, i.e.
electrostatic waves. To study Langmuir waves, it is sufficient to consider an
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unmagnetized plasma (B0 = 0). Further, we assume no equilibrium electric
field (E0 = 0) and that the perturbation is in x̂ direction,

δE(x) = Ẽx̂ei(k·x−ωt). (2.220)

For the purpose of this section we are also only interested in longitudinal waves,
i.e. k̂ = x̂, hence,

δE(x) = Ẽx̂ei(kx−ωt). (2.221)

Note that the assumption that Ẽ = Ẽx̂ ∥ k̂ implies that the electric field is
electrostatic, i.e., there is no magnetic field perturbation, since from Faraday’s
law

0 = k× Ẽ = −ω

c
B̃. (2.222)

Given the assumptions, we treat this problem as one-dimensional. In the follow-
ing, we derive the dispersion equation for this case without restricting ourselves
to a cold plasma.

For the given scenario, the Vlasov equation for each species σ is

∂fσ
∂t

+ vx
∂fσ
∂x

+
eZσ

mσ
δE

∂fσ
∂vx

= 0. (2.223)

Here, we already omitted terms of the gradients that vanish due to the as-
sumptions we made, viz. that the wave propagates in x̂ direction and that the
electric field perturbation is in the same direction. We linearize the distribution
function,

fσ(x,v, t) = fσ0(v) + δfσ(x,v, t), (2.224)

where we assume that the background is uniform in space (no gradients) and
time (steady-state)7. We will further write the perturbation as a monochromatic
plane wave,

δfσ(x,v, t) = f̃σ(v)e
i(k·x−ωt) (2.225)

= f̃σ(v)e
i(kx−ωt), (2.226)

since k ∥ x̂. The equilibrium part of the distribution function trivially satisfies

∂fσ0(v)

∂t
+ vx

∂fσ0(v)

∂x
= 0. (2.227)

Hence, the perturbation of the distribution function is governed by

∂δfσ
∂t

+ vx
∂δfσ
∂x

+
eZσ

mσ
δE

∂fσ0
∂vx

= 0, (2.228)

where we neglected terms of higher order in the perturbation (linearization).

7Note that the equilibrium can be written as a function of the velocity components since
the momenta in each direction are conserved, c.f. section 2.2.1.
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Now, applying the monochromatic plane wave ansatz to solve for δfσ, the
Vlasov equation becomes algebraic,

−iωf̃σ + ikvxf̃σ = −eZσ

mσ
Ẽ
∂fσ0
∂vx

, (2.229)

which is solved to be

f̃σ =
−ieZσ

mσ(ω − kvx)
Ẽ
∂fσ0
∂vx

. (2.230)

We see that the distribution function perturbation depends on the velocity
derivative of the equilibrium distribution function and is driven by the elec-
tric field perturbation.

To get the dispersion equation, we need to consider Gauss’ law,

∇ · δE = 4πδρ. (2.231)

Recall, that the charge density perturbation is determined by the zeroth moment
of the distribution function perturbation. Thus, with the wave ansatz, we can
write Gauss’ equation as

ikẼ = 4πe

∫
d3v

(
Zif̃i − f̃e

)
, (2.232)

for a simple plasma with one ion species with charge number Zi.
Inserting the solution to Vlasov’s equation we have

ikẼ = −i4πe2Ẽ
∫

d3v

(
Z2
i

mi

∂vxfi0
ω − kvx

+
1

me

∂vxfe0
ω − kvx

)
(2.233)

ik

(
1 + 4πe2

∫
d3v

(
Z2
i

mi

∂vxfi0
ω − kvx

+
1

me

∂vxfe0
ω − kvx

))
Ẽ = 0 (2.234)

ikε(k, ω)Ẽ = 0, (2.235)

where we defined the dielectric function

ε(k, ω) = 1 + 4πe2
∫

d3v

(
Z2
i

mi

∂vxfi0
ω − kvx

+
1

me

∂vxfe0
ω − kvx

)
(2.236)

= 1 +
4πe2ne

me

∫
dvx

(
Z2
i me

mine

∫
dvydvz ∂vx

fi0
ω − kvx

+
1

ne

∫
dvydvz ∂vxfe0
ω − kvx

)
.

(2.237)

The prefactor 4πe2ne/me = ω2
pe equals the electron plasma frequency (squared).

Further, we define a function

g(vx) =
Z2
i me

nemi

∫∫
dvydvz fi0(v) +

1

ne

∫∫
dvydvz fe0(v). (2.238)
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With this, and pulling out a factor k from the denominator, we arrive at the
dielectric function

Electrostatic dielectric function

ε(k, ω) = 1 +
ω2
pe

k2

∫
dvx

∂vxg(vx)

ω/k − vx
. (2.239)

The first term in ε is due to the vacuum part of Gauss’ law, i.e. the right
hand side. The second term incorporates the response of the plasma. Hence, it
contains the properties of the plasma equilibrium.

The equation deduced from Gauss’ law, equation (2.235), has two solutions.

First, the trivial one, Ẽ = 0, which is not interesting. Second, setting ε(k, ω) =
0. Setting the dielectric function to zero, this equation can be solved for the
dispersion relation ω(k), depending on the equilibrium distribution function of
the species.

Note that in g(vx) the contribution of the ions is a factor me/mi smaller
than that of the electrons. For example, in a deuterium-electron plasma, this
would be a factor of about 4000. However, considering aloso the integral over
the distribution function, this ratio is weakened to

√
me/mi ≈ 1/100 which is

still a large factor.
Furthermore, notice the denominator of the integrand, ω/k − vx. It is the

difference between the phase velocity of the wave, vp = ω/k, and the particle
velocity vx and shows a root where they two are equal. Hence, the integrand
has a singularity. How to handle this pole is an extensive topic in itself [7].
For simplicity, in this lecture, we will avoid treating it rigorously. Nevertheless,
we will see that this resonance condition plays a significant role in Landau
damping 2.3.4.

Let’s determine g(vx) for the case that the ions and electrons follow a
Maxwellian distribution in equilibrium, i.e.

fi0(v) =
ni

(2πv2Ti)
3/2

exp

(
−
v2x + v2y + v2z

2v2Ti

)
(2.240)

fe0(v) =
ne

(2πv2Te)
3/2

exp

(
−
v2x + v2y + v2z

2v2Te

)
. (2.241)

Then,

g(vx) =
Z2
i me

nemi

∫
dvydvz fi0(v) +

1

ne

∫
dvydvz fe0(v)

=
Z2
i me

nemi
2πv2Ti

ni

(2πv2Ti)
3/2

e
− v2

x
2v2

Ti +
1

ne
2πv2Te

ne

(2πv2Te)
3/2

e
− v2

x
2v2

Te (2.242)

= Zi
me

mi

1√
2πvTi

e
− v2

x
2v2

Ti +
1√

2πvTe

e
− v2

x
2v2

Te . (2.243)

54



2.3. LINEAR KINETIC PLASMA WAVES

Figure 2.8: Plot of g(vx) for Ti = Te.

Here, we used the Gaussian integral
∫∞
−∞ dx exp(−x2a) =

√
π/a and the quasineu-

trality condition
∑

σ Zσnσ = −ne + Zini = 0. For equal temperature, Ti = Te,
the thermal velocites are vTi ≪ vTe, meaning, that the ion contribution to g
falls off way more rapidly than the electron contribution. Furthermore, as men-
tioned before, the contribution of the ions is a factor me/mi ≪ 1 smaller than
that of electrons. A sketch of this behavior is shown in figure 2.8.

Let’s first solve the dispersion equation (2.239) for a limiting case.

2.3.3 Warm Langmuir waves

Let’s focus here on high frequency electron waves, i.e. Langmuir waves. We en-
countered them already in the cold plasma wave section 2.3.1. In the following,
in contrast to the cold plasma, we will determine a correction to the dispersion
relation due to the thermal motion of the plasma.

Assuming a high perturbation frequency implies that the heavy ions are too
slow to react and we can neglect their contribution. Further, for now, let’s put
our attention to waves with large phase velocity in the sense that ω/k ≫ vx for
any non-zero value of g(vx) (sketch in figure 2.9)8. This is called warm plasma
assumption. Using this assumption, we can apply partial integration and Taylor
series expansion in (2.239) and skip the pole of the integrand at vx = ω/k.

Let’s start with the partial integration in the dielectric function

ε(k, ω) = 1 +
ω2
pe

k2

∫
dvx

1

ω/k − vx
∂vxg(vx) (2.244)

= 1 +
ω2
pe

k2 ���������
[

g(vx)

ω/k − vx

]vx=∞

vx=−∞
−

ω2
pe

k2

∫
dvx g(vx)∂vx

(
1

ω/k − vx

)
(2.245)

= 1−
ω2
pe

k2

∫
dvx g(vx)

1

(ω/k − vx)2
. (2.246)

8Although this seems deceptively similar to the cold plasma case, we make this assumption
after we have determined the dispersion equation.
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Figure 2.9: Sketch of g(vx) for which ω/k is large for any non-zero value of g.

We can Taylor expand the denominator of the integrand

1

(ω/k − vx)2
=

k2

ω2

1

(1− kvx/ω)2

=
k2

ω2

(
1 + 2

kvx
ω

+ 3
k2v2x
ω2

+O
(
k3v3x
ω3

))
. (2.247)

We will see in a minute while we include the second order (v2x) in our consider-
ation. Using this in the integral, we get

ε(k, ω) = 1−
ω2
pe

ω2

∫
dvx g(vx)

1

(ω/k − vx)2
(2.248)

= 1−
ω2
pe

ω2

∫
dvx g(vx)

(
1 + 2

kvx
ω

+ 3
k2v2x
ω2

+O
(
k3v3x
ω3

))
(2.249)

= 1−
ω2
pe

ω2

∫
dvx g(vx)− 2

ω2
pek

ω3

∫
dvx g(vx)vx (2.250)

− 3
ω2
pek

2

ω4

∫
dvx g(vx)v

2
x +O

(
k3

ω5

)
(2.251)

(2.243)
= 1−

ω2
pe

ω2

1√
2πvTe

∫
dvx exp

(
− v2x
2v2Te

)
(2.252)

− 2
ω2
pek

ω3

1√
2πvTe

∫
dvx exp

(
− v2x
2v2Te

)
vx (2.253)

− 3
ω2
pek

2

ω4

1√
2πvTe

∫
dvx exp

(
− v2x
2v2Te

)
v2x +O

(
k3

ω5

)
. (2.254)

The Gauss integral (2.252) is
√
2πvTe, the integral (2.253) is zero (odd function

over symmetric interval), and the integral (2.254) is v3Te

√
2π which is due to∫

dx x2 exp(−x2/a) =
√

π/a/(2a). Since the second integral is zero, we had to
include the term of order v2x to get a next order effect.

56



2.3. LINEAR KINETIC PLASMA WAVES

Hence, we have

1−
ω2
pe

ω2
�
�
�
�1√

2πvTe

����√
2πvTe − 3

ω2
pek

2

ω4
�

�
�
�1√

2πvTe

�2v
2
Te

�2 �
���√
2πv2Te (2.255)

= 1−
ω2
pe

ω2
− 3

ω2
pek

2

ω4
v2Te = 0, (2.256)

which gives us
ω4 − ω2

peω
2 − 3ω2

pek
2v2Te = 0. (2.257)

This is a biquadratic equation for ω. Using the quadratic formula, we get

ω2 =
1

2

(
ω2
pe ±

√
ω4
pe + 12ω2

pek
2v2Te

)
(2.258)

=
ω2
pe

2

(
1±

√
1 + 12

k2v2Te

ω2
pe

)
(2.259)

≈
ω2
pe

2

(
1± 1 + 6

k2v2Te

ω2
pe

)
(2.260)

=
ω2
pe

2
±

ω2
pe

2
+ 3k2v2Te. (2.261)

Here, we want to choose the upper sign, since we are interested in high frequency
oscillations, and typically ω2

pe ≫ k2v2Te. Finally, this gives us the

Warm Langmuir wave dispersion relation

ω(k)2 = ω2
pe + 3k2v2Te, (2.262)

which is also called the Bohm-Gross dispersion relation. The second term
on the right is a modification due to the finite temperature of the plasma,
but still only in the warm plasma limit. In a cold plasma, where ω/k ≫ vTe

is used from the outset, this term would be absent and we would have gotten
simple electron plasma oscillations with ω2 = ω2

pe.

2.3.4 Landau damping

Now, we relax the restriction of warm plasma, i.e. the phase velocity is well
within the reach of the particle population. We will see that a collisionless
damping effect occurs, which is called Landau damping. Most notably, Lan-
dau damping is a process where waves are damped in a collisionless plasma
by resonant interaction with the particles. This process happens without any
collisional dissipation. Energy is redistributed from the wave to the particles.

The process of Landau damping is not only an important topic in plasma
physics, but it also plays a role in the dynamics of galaxies where gravity substi-
tutes the long-range Coulomb interaction. The damping has a stabilizing effect
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on the galaxy dynamic. In plasma physics, Landau damping occurs for all types
of modes. However, we discuss it only for the case of Langmuir waves, which is
the simplest one.

The significance of Landau damping is that a time-reversible 9 system of
equations (Vlasov-Poisson) describes a time-irreversable effect (dissipative damp-
ing). In essence, energy dissipates from the wave to the particles. This effect
is similar to mechanical friction where for example a car on the road dissipates
kinetic energy by the frictional contact to the road.

Here, we will only treat the linear version of Landau damping. However,
keep in mind that some scenarios require a more rigorous non-linear treatment
(e.g. for trapped particles [10]).

The mathematically rigorous way to treat this collisionless damping effect
was first shown by Landau [6] by posing the problem in terms of an initial-
value problem. Landau then used Laplace and Fourier transforms to solve the
problem. This treatment includes the correct handling of the poles occurring in
the dielectric function by means of complex integration and the Landau contour.
In the following, we discuss Landau damping in a simplified way.

We still consider the same plasma scenario as in the previous section, i.e.,
an unmagnetized single ion-species plasma without collisions that is perturbed
by an electric field. Also, we neglect ion dynamics since they are significantly
heavier than the electrons. The perturbation is given by a time-harmonic plane
wave and is considered small. The dispersion equation upon linearization of
Vlasov’s equation is given by (2.239).

Recalling that the wave is described by ∝ exp(−iωt) we see that if the fre-
quency has an imaginary contribution, ω = ωr + iωi, the wave is either increas-
ing or damped exponentially over time. Under the assumption of a complex
frequency, we determine its real and imaginary part.

To calculate the real and imaginary part of ω, we assume that |ωi| ≪ |ωr|,
which we will show later. First, we split the dielectric function into real and
imaginary part

ε(k, ω) = 1 +
ω2
pe

k2

∫
du

1

ω/k − u

∂g(u)

∂u
(2.263)

= εr(k, ω) + iεi(k, ω). (2.264)

Using the assumption that the imaginary part of the frequency is smaller than
the real part, we Taylor expand the real and imaginary part of the dielectric

9Time-reversible means that the equations of motion are symmetric under t → −t and
v → −v.

58



2.3. LINEAR KINETIC PLASMA WAVES

function

ε(k, ω) = εr(k, ωr) + iεi(k, ωr) + (ω − ωr)
∂εr(k, ω)

∂ω

∣∣∣∣
ω=ωr

(2.265)

+ (ω − ωr)
∂εi(k, ω)

∂ω

∣∣∣∣
ω=ωr

+O(ω2
i ) (2.266)

≈ εr(k, ωr) + iεi(k, ωr) + iωi
∂εr(k, ω)

∂ω

∣∣∣∣
ω=ωr

, (2.267)

= εr(k, ωr) + i

(
εi(k, ωr) + ωi

∂εr(k, ω)

∂ω

∣∣∣∣
ω=ωr

)
(2.268)

where we neglect the derivative of εi because it is a product of ωi and εi ∼ ωi.
Setting this equation to zero to get the eigenmode solutions (dispersion rela-

tion), both the real part and the imaginary part have to vanish independently.
That is,

εr(k, ωr) = 0, (2.269)

which determines ωr, and

0 = εi + ωi
∂εr
∂ω

∣∣∣∣
ω=ωr

⇒ ωi = −
εi(k, ωr)

∂εr/∂ω|ω=ωr

, (2.270)

which determines ωi.
To get ωr and ωi, we need to figure out what εr and εi are. To do so, we go

back to the definition of the dielectric function

ε(k, ω) = 1−
ω2
pe

k2

∫
du

1

u− ωr/k − iωi/k

∂g(u)

∂u
. (2.271)

This integral can be rewritten using the Sokhotski-Plemelj theorem from com-
plex analysis,

lim
b→0

1

u− a± i|b|
= P

(
1

u− a

)
∓ iπδ(u− a). (2.272)

Here, P is the principal value given by

P

∞∫
−∞

du
f(u)

u− a
= lim

ϵ→0+

( a−ϵ∫
−∞

du
f(u)

u− a
+

∞∫
a+ϵ

du
f(u)

u− a

)
, (2.273)

where f(u) is any function. We can use the Sokhotski-Plemelj theorem to rewrite

59



2.3. LINEAR KINETIC PLASMA WAVES

the dielectric function

ε(k, ω) = 1−
ω2
pe

k2

∫
du

1

u− ωr/k − iωi/k

∂g(u)

∂u
(2.274)

= 1−
ω2
pe

k2
P

∫
du

(
1

u− ωr/k

∂g(u)

∂u
− iπδ(u− ωr/k)

∂g(u)

∂u

)
(2.275)

= 1−
ω2
pe

k2
P

∫
du

1

u− ωr/k

∂g(u)

∂u︸ ︷︷ ︸
εr

+

(
−i

ω2
peπ

k2
∂g(u)

∂u

∣∣∣∣∣
u=ωr/k︸ ︷︷ ︸

εi

)
. (2.276)

This gives us now expressions for the real and imaginary parts of ε. We can solve
the real part as before by partial integration and by assuming that ∂g(u)/∂u = 0
at the pole since we are not interested in the details of this integration. Then

εr(k, ωr) = 1−
ω2
pe

k2
P

∫
du

1

u− ωr/k

∂g(u)

∂u
= 0 (2.277)

⇒ εr = 1−
ω2
pe

ω2
r

−
3k2v2Teω

2
pe

ω4
r

(2.278)

⇒ ω2
r = ω2

pe + 3k2v2Te (2.279)

ωr ≈ ωpe(1 +
3

2
k2λ2

D), (2.280)

which is the Bohm-Gross dispersion relation.
More interestingly, we can evaluate the imaginary part of the frequency,

ωi = −
εi(k, ωr)

∂εr/∂ω|ω=ωr

(2.281)

=
1

∂εr/∂ω|ω=ωr

ω2
peπ

k2
∂g(u)

∂u

∣∣∣∣∣
u=ωr/k

(2.282)

=

(
2ω2

pe

ω2
r

+
13k2v2Teω

2
pe

ω5
r

)−1ω2
peπ

k2
∂g(u)

∂u

∣∣∣∣∣
u=ωr/k

(2.283)

≈
(
2ω2

pe

ω2
r

)−1ω2
peπ

k2
∂g(u)

∂u

∣∣∣∣∣
u=ωr/k

(2.284)

≈
(

2

ωpe

)−1ω2
peπ

k2
∂g(u)

∂u

∣∣∣∣∣
u=ωr/k

(2.285)

⇒ ωi =
ω3
peπ

2k2
∂g(u)

∂u

∣∣∣∣
u=ωr/k

. (2.286)

Finally, we have the angular frequency as a function of the wave number

60



2.3. LINEAR KINETIC PLASMA WAVES

Dispersion relation with Landau damping or growth

ω(k) = ωpe(1 + 3k2λ2
D) + i

ω3
peπ

2k2
∂g(u)

∂u

∣∣∣∣
u=ωr/k

. (2.287)

This equation is valid for Langmuir waves such that λDk ≪ 1, i.e. the
wavelength of the wave is large in comparison to the Debye length.

Clearly, the slope of the distribution function ∂g(u)/∂u|u=ωr/k determines if
a wave with phase velocity ωr/k is Landau damped (ωi < 0) or Landau growing
(ωi > 0). For a Maxwellian, we have

ωi =
ω3
peπ

2k2
1√

2πvTe

∂

∂u

(
exp

(
− u2

2v2Te

))∣∣∣∣∣
u=ωr/k

(2.288)

= −
ω3
pe

k2

√
π

8

1

v3Te

ωr

k
exp

(
− ω3

r

2k2v2Te

)
(2.289)

= −
√

π

8

ωr

λ3
Dk3

exp

(
−
ω2
pe + 3k2v2Te

2k2v2Te

)
(2.290)

= −
√

π

8

ωr

λ3
Dk3

exp

(
− 1

2k2λ2
D

)
exp(−3/2) (2.291)

≈ −
√

π

8

ωpe

λ3
Dk3

exp

(
− 1

2k2λ2
D

)
exp(−3/2). (2.292)

Therefore, for the Maxwellian case ωi < 0 and we have damping. The damping
vanishes for k → 0 and it increases with increasing k. For kλD ∼ 1, i.e. short
wavelengths, the damping is ∼ ωpe which is very large. Hence, such waves are
never observed.

The complex angular frequency (2.287) can be understood on a more intu-
itive level. Any distribution function g(u) that has ∂g/∂u|u=ωr/k < 0, i.e. a
negative slope at the phase velocity ωr/k of the wave, has more particles with
slightly lower velocity than the phase velocity than it has particles with slightly
higher velocity. It is mainly these particles, with velocity around the phase
velocity of the wave, that interact with the wave. Particles with lower velocity
get sped up by gaining energy from the wave. Particles with higher velocity
get slowed down by giving up energy to the wave. Since there are more slower
particles (due to negative slope) more particles are accelerated than decelerated
meaning there is a net transport of energy from the wave to the particles and the
wave is damped. This chain of thought can be repeated for distribution func-
tions with positive slopes, in which case energy transitions to the wave causing
the wave to grow.
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2.4 From kinetic theory to fluid equations

Kinetic theory describes plasma in terms of the phase space distribution func-
tion. However, what’s observed in experiments are quantities like particle den-
sity, temperature, rotation velocity, etc. In principle, we could always start
with kinetic theory and derive these quantities. However, although neglecting
velocity space effects, it is often sufficient to describe the plasma dynamics by
means of the macroscopic quantities.

The fluid description frequently assumes that the velocity distribution of
particles is given by a Maxwellian, that is, it is assumed that the velocity dis-
tribution is in equilibrium. This allows to define the state of the velocity distri-
bution uniquely by one number, the temperature. But, since collisions can be
rare in high temperature plasmas, deviations from the thermal equilibrium may
remain for long periods of time. Surprisingly, the fluid description provides in
many scenarios a robust and experimentally confirmed description.

Note that fluid theory comes also in multiple complexities. The fluid picture
sees the plasma as a conglomerate of multiple interacting fluids. For example,
a single ion-electron plasma can be described by two fluids. Most prominently,
magnetohydrodynamics (MHD) combines all species of a plasma into a single
fluid. This can be done including resistive effects or neglecting them (ideal).
In the following, we will derive the two-fluid equations, also called Braginskii
equations, from the Vlasov equation.

We transition from the phase-space Vlasov description of the plasma to the
configuration space fluid picture by taking velocity moments of the distribution
function and the Vlasov equation. By taking the moments, we get an infinite
hierarchy of equations in 4D space since in every equation for a given moment
the next order moment occurs. However, with an appropriate truncation, we
will arrive at a suitable set of equations for two-fluid theory.

We start by noting that

nσ(x, t) =

∫
dv3 fσ(x,v, t) (2.293)

constitutes a normalization factor which at the same time is the particle density.
Further, we define the fluid velocity

uσ(x, t) =
1

nσ

∫
d3v vfσ(x,v, t). (2.294)

With this definitions let’s build the first moment of the Vlasov equation.
Hence, we formally multiply the equation by 1 (first moment) and integrate
over velocity∫

dv3

(
∂tfσ
1

+ v · ∇fσ
2

+
Zσe

mσ

(
E
3

+
1

c
v ×B

4

)
· ∇vfσ

)
= 0. (2.295)
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Integrating over the first term gives just ∂tnσ. For the second term, we have

2 =

∫
dv3 v · ∇fσ (2.296)

=

∫
dv3 ∇ · (vfσ) (2.297)

= ∇ ·
∫

dv3 vfσ (2.298)

= ∇ · (nσuσ). (2.299)

The third term gives

3 =

∫
dv3 E · ∇vfσ (2.300)

=

∫
Ω

dv3 ∇v · (Efσ) (2.301)

Gauss law
=

∫
∂Ω

dv ·Efσ (2.302)

= E ·
∫
∂Ω

dv fσ (2.303)

= 0 (2.304)

since the distribution function goes to zero for v→∞. Since v×B commutates
with ∇v the same holds true for the 4 term. Hence, we arrive at the

Continuity equation

∂nσ

∂t
+∇ · (nσuσ) = 0. (2.305)

This describes the conservation of particles. Also, we see that this equation
contains the fluid velocity uσ. We will see in a moment that the next order
equation provides the dynamical description of this quantity. The next higher
moment of the Vlasov equation is determined by mutliplying the equation with
v and integrating over velocity,∫

dv3 v

(
∂tfσ
1

+ v · ∇fσ
2

+
Zσe

mσ

(
E
3

+
1

c
v ×B

4

)
· ∇vfσ

)
= 0. (2.306)

In this case, we have

1 =

∫
d3v v∂fσ (2.307)

= ∂t

∫
d3v vfσ (2.308)

= ∂t(nσuσ). (2.309)
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For the next integral, we introduce a coordinate transformation in the integra-
tion, viz. v = v′(x, t)+u(x, t). Herein, uσ is the average part of the flow, while
v′ are random fluctuations. Note that v′ depends on x while v doesn’t. Also,
it holds that d3v = d3v′. With this, we have

2 =

∫
d3v v(v · ∇)fσ (2.310)

= ∇ ·
∫

d3v vvfσ (2.311)

= ∇ ·
∫

d3v′ (v′v′ + v′u+ uv′ + uu) fσ (2.312)

=
1

mσ
∇ ·
←→
P +∇ · (uunσ), (2.313)

where we defined the pressure tensor

←→
P σ = mσ

∫
d3v′ v′v′fσ. (2.314)

The pressure is given by fluctuations in the velocity, while average flows do not
contribute to the pressure. Also, we used here that

∫
dv′v′fσ = 0 which is

valid for symmetric distribution functions, which is the case for the Maxwellian.
Further, we have

3 =

∫
d3v vE · ∇vfσ (2.315)

=

∫
d3v v∇v · (Efσ) (2.316)

P.I.
= −

∫
d3v Efσ = −Enσ, (2.317)

and

4 =

∫
d3v v(v ×B) · ∇vfσ (2.318)

=

∫
d3 v∇v ·

(
(v ×B)fσ

)
(2.319)

P.I.
= −

∫
d3v v ×Bfσ (2.320)

= −u×Bnσ. (2.321)

Putting everything together, we arrive at the equation for momentum conser-
vation

∂t(nσuσ) +∇ · (nσuu) = −
1

mσ
∇ ·
←→
P σ +

Zσe

mσ
nσ

(
E+

1

c
uσ ×B

)
. (2.322)

By multiplying this equation with the mass mσ, we see that it has units of
force/volume. Hence, this equation is often also called the force balance equa-
tion.
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Note that we didn’t take collisions into account. Including a collision opera-
tor would introduce an additional term in the force balance equation, namely, a
friction force term. That is, collisions between particles result in frictional flow
of the fluid.

We can further develop the left hand side by

∂t(nσuσ) +∇ · (nσuu) = uσ∂tnσ + nσ∂tuσ + nσ(uσ · ∇)uσ + (uσ · ∇)(nσuσ),

(2.323)

where we see that the underlined terms are just (2.305)·uσ and thus cancel. The
remainder is then

nσ∂tuσ + nσ(uσ · ∇)uσ = nσ(∂tuσ + uσ · ∇uσ) (2.324)

= nσ
duσ

dt
, (2.325)

where we defined the convective derivative

d

dt
= ∂t + uσ · ∇. (2.326)

Plugging this result into equation (2.322) and multiplying the equation with the
mass, we arrive at the

Force balance equation

mσnσ
duσ

dt
= −∇ ·

←→
P σ + Zσenσ

(
E+

1

c
uσ ×B

)
. (2.327)

If fσ is isotropic in the velocity which is the case for a Maxwellian distri-
bution, the off-diagonal elements of the pressure tensor vanish 10. Hence, it is
useful to define the scalar pressure

pσ = mσ

∫
d3v′ v′xv

′
xfσ = mσ

∫
d3v′ v′yv

′
yfσ = mσ

∫
d3v′ v′zv

′
zfσ (2.328)

=
mσ

3

∫
d3v′ v′ · v′fσ. (2.329)

Usually, the scalar pressure is taken as the ideal gas pressure

pσ = nσTσ. (2.330)

However, strictly speaking, it is only valid in a collisional plasma in thermody-
namic equilibrium (following a Maxwellian) when thermal motion dominates
over collective effects and the magnetic field does not introduce significant
anisotropies.

10Note that in the plasma wave section we assumed that the plasma is perturbed from a
Maxwellian equilibrium. Hence, the perturbation δf to the distribution function may intro-
duce an anisotropic contribution to the pressure.
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With the scalar pressure, we can dissect the pressure tensor in two parts

←→
P σ = pσ1 +

←→
Π , (2.331)

where
←→
Π is the off-diagonal, or anisotropic part of the pressure tensor and is

called the viscous stress tensor. The viscous stress tensor is usually smaller
than the scalar pressure and you will find it often omitted from the force balance
equation. As the name suggests, this anisotropic part introduces viscosity.

As mentioned before, the equations we get by performing moments of the
Vlasov equation always depend on moments that are one order higher. For ex-
ample, in the continuity equation (2.322), the fluid velocity u ∝

∫
dvvf occurs,

which is already the first velocity moment. For the force balance equation, it
is the pressure tensor which is one order higher. Hence, to find an equation
for the pressure tensor, the next order moment equation has to be determined.
This next order equation describes the conservation of energy and gives the
dynamical description of the temperature.

This hierarchy of equations never leads to an end, thus an exact description
requires an infinite number of equations. However, we can stop at any point by
making an ad hoc closing assumption.

Of course, self-consistency of the fluid plasma description requires Maxwell’s
equations. In the fluid case, the charge and current densities are given by

ρσ(x, t) = Zσe

∫
d3v fσ(x,v, t) (2.332)

= Zσenσ(x, t), (2.333)

jσ(x, t) = Zσe

∫
d3v vfσ(x,v, t) (2.334)

= Zσeuσ(x, t). (2.335)

Note that in this derivation, we omitted collisions. In this case, different
fluids only couple via the charge and current densities and the electromagnetic
fields. However, collisions would introduce an additional force term in the force
balance equation that corresponds to collisional friction. This collisional fric-
tion on the other hand also introduces electrical resistivity. Hence, without
collisions considered, the fluid equations derived here are ”ideal”, i.e. zero re-
sistivity or infinite conductivity.

After deriving the fluid equations, where we have a set of equations for
each individual particle species, we can go a step further in the simplification
and describe the whole system as a single fluid. The resulting theory is called
magnetohydrodynamics (MHD). The advantage of this description is its sim-
plicity, but it only describes large-scale, low-frequency phenomena. As such, it
is frequently used to determine magnetic equilibrium configurations in magnetic
confinement devices. In particular, we define the total mass density

ρ =
∑
σ

mσnσ, (2.336)
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the total current density

J =
∑
σ

Zσenσuσ, (2.337)

and the center of mass fluid velocity

V =
1

ρ

∑
σ

mσnσuσ. (2.338)

If we sum up the force balance equation for each species, for example, we get
the force balance equation of MHD

ρ

(
∂

∂t
+V · ∇

)
V = −∇p+ 1

c
J×B. (2.339)

The equilibrium of a fusion device is then determined by the stationary steady-
state of this equation, that is

c∇p = J×B. (2.340)

This equation looks deceptively simple, but it can be rather involved to solve
for realistic configurations.

2.5 Collisions

Collisions in a fully-ionized plasma are given by Coulomb interactions be-
tween charged particles 11. The effect of collisions is the transfer of energy and
momentum between particles. Most importantly, collisions lead to a redistribu-
tion of the particle distribution function towards thermal equilibrium, i.e. a
Maxwellian distribution. Collisions, and thermal equilibration, happens within
species, e.g. electrons and electrons, and also between species, e.g. electrons
and ions. The latter is important for the thermalization of the plasma as a
whole.

The frequency of collisions depends on the parameters of a plasma, in par-
ticular, density and temperature. A higher density provides more particles that
can interact and collide with each other. On the other hand, higher temperature
means a larger average velocity (vT ) and, thus, particles spend less time in the
Coulomb ”influence” zone of other particles given by the Debye length. With-
out deriving this here, the scaling of the (perpendicular momentum) collision
frequency is given by

Collision frequency scaling

ν ∝ n

T 3/2
. (2.341)

11Head on hard-sphere collisions like with neutral particles are only occurring in partially-
ionized plasmas where there are still neutral particles present.
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Figure 2.10: Sketch of the two types of collisions: a.) multiple small-angle
scatterings, b.) single large-angle scattering.

There are in fact multiple definitions of the collision frequency, or even what
constitutes a ”collision”. Most often, a Coulomb interaction between particles
is considered a collision in the proper sense if the scattering angle, i.e. the
angle between the momentum before and after the interaction, is larger than
90°. There are two options to arrive at this which are sketched in figure 2.10:
either by a single large-angle scattering or by many small-angle scatterings. The
latter is the more frequent case.

The collision frequency will occur in the kinetic equation as part of the
collision operator on the right hand side. As mentioned before, the right hand
side of the kinetic equation describes the particle-like behavior of the plasma,
i.e. the collisions between particles. The left hand side describes the wave-like
behavior of the plasma, i.e. the collective motion of particles in response to
electromagnetic fields.

Including collisions in Vlasov’s equation results in the plasma kinetic equa-
tion,

Plasma kinetic equation

∂f

∂t
+ v · ∇f +

e

m

(
E+

1

c
v ×B

)
· ∇vf =

(∂f
∂t

)
coll.

, (2.342)

where we now have a source term on the right hand side representing colli-
sions. This term is often written as an operator(∂f

∂t

)
coll.

= C(f), (2.343)

acting on the particle distribution function. Particles can collide with other
particles of the same species, or with particles from other species. Hence, we
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2.5. COLLISIONS

can write the collision operator as a sum

C(fα) =
∑
β

C(fα, fβ), (2.344)

indicating that species alpha collides with all other species.

Conservation rules

The collision operator should fulfill certain conservation rules [5] motivated by
physics. For example, collisions only change the velocity of the colliding parti-
cles, not their position, i.e. they don’t get ”teleported”. Therefore, the particle
density should not be affected by collisions 12. Hence, considering the fluid
continuity equation including the collision term, we have

∂nσ

∂t
+∇ · (nσuσ) =

∂nα

∂t

∣∣∣∣
coll.

=

∫
d3v

∑
β

C(fα, fβ) = 0. (2.345)

Of course, strictly speaking, we could include the impact of fusion processes,
in which case particles of one species are destroyed while particles of another
species are created. However, fusion processes even in planned fusion reactors
are usually so rare that this effect can be neglected.

Further, the collision operator has to follow conservation laws for momentum
and energy, ∫

d3v mαvC(fα, fβ) = −
∫

d3v mβvC(fβ , fα), (2.346)∫
d3v

mαv
2

2
C(fα, fβ) = −

∫
d3v

mβv
2

2
C(fβ , fα). (2.347)

This implies that the force species α exerts on β is equal and opposite to that
which β exerts on α, and that no energy is produced by collisions (again ne-
glecting fusion processes). Intra-species collisions (α = β) gives∫

d3v mαvC(fα, fα) = 0, (2.348)∫
d3v

mαv
2

2
C(fα, fα) = 0. (2.349)

The most important effect of the collision operator is that it drives the
distribution function towards local thermodynamic equilibrium, that is, towards
a Maxwellian. Hence, any distribution of particles in a plasma, without driving
mechanisms, will eventually end up in thermodynamic equilibrium.

12As a sudden change in position would ”teleport” a particle to a different position, which
could be well outside the plasma and thus changing the density.
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2.5. COLLISIONS

2.5.1 Bhatnagar–Gross–Krook collision operator

Of course, we need a mathematical description of the collision operator. Var-
ious operators exist in the literature. Probably the most simplest one is the
Bhatnagar–Gross–Krook (BGK) collision operator. It is given by(

∂f

∂t

)
coll.

= −ν
(
f(x,v, t)− f0(v)

)
. (2.350)

This operator does not conserve energy nor momentum, but only the particle
number. Still, due to its simplicity it is used to incorporate thermalization
of the plasma. The BGK operator drives the distribution function towards
a Maxwellian f0 with a collision frequency ν. The BGK operator is a linear
operator, i.e. it can be applied to any distribution function and will always
drive it towards the Maxwellian.

2.5.2 Fokker-Planck collision operator

An equation describing the temporal evolution of the particle distribution func-
tion due to the cumulative effect of many collisions was found by Adriaan
Fokker [2] and Max Planck [9] (though many more names for this equation
in different contexts are known, see wikipedia). The Fokker-Planck equation
is not specific to plasma physics. Here, we use the Fokker-Planck equation to
describe the impact of cumulative small angle scattering by Coulomb collisions
on f , that is, we find an expression for (∂tf)coll.. We will see, that the resulting
equation describes the time evolution of f in terms of drag and diffusion. Be-
fore specifying the discussion to plasmas, let’s derive the Fokker-Planck equation
generally [11].

General derivation

We start by writing(
∂f

∂t

)
coll.

=
f(x,v, t+∆t)− f(x,v, t)

∆t
. (2.351)

The change in the distribution function at the later time step can be found by
integrating over all possible changes in the velocity

f(x,v, t+∆t) =

∫
d∆v f(x,v −∆v, t)Ψ(v −∆v, t), (2.352)

where Ψ(v−∆v,∆v) is the probability that a particle with a velocity v changes
its velocity by ∆v due to collisions in a time ∆t. Note that the probability has
to sum up to one, i.e.

∫
d∆vΨ(v,∆v) = 1. Since most collisions are small angle

scatterings, and thus change the velocity only little13, we can Taylor expand the

13Actually, the derivation does not require this assumption, but we make it anyway in
respect to the application to plasmas.

70



2.5. COLLISIONS

integrand. Thus,

f(x,v −∆v, t)Ψ(v −∆v, t) = f(x,v, t)Ψ(v,∆v)−
∑
i

∂

∂vi
(fΨ)∆vi

+
1

2

∑
ij

∂

∂vi

∂

∂vj
(fΨ)∆vi∆vj . (2.353)

Plugging this into the integral, we have

f(x,v, t+∆t) = f(x,v, t)−
∑
i

∂

∂vi
f(x,v, t)

∫
d∆v Ψ(v,∆v)∆vi

+
1

2

∑
ij

∂2

∂vi∂vj
f(x,v, t)

∫
d∆vΨ(v,∆v)∆vi∆vj

= f(x,v, t)−
∑
i

∂

∂vi
f(x,v, t)⟨∆vi⟩

+
1

2

∑
ij

∂2

∂vi∂vj
f(x,v, t)⟨∆vi∆vj⟩, (2.354)

where we defined the drag coefficient (dynamic friction)

⟨∆vi⟩ =
∫

d∆v Ψ(v,∆v)∆vi, (2.355)

and the diffusion tensor

⟨∆vi∆vj⟩ =
∫

d∆v Ψ(v,∆v)∆vi∆vj . (2.356)

Finally, we arrive at the Fokker-Planck equation

Fokker-Planck equation

(
∂f

∂t

)
c.

= −
∑
i

∂

∂vi

(
f(x,v, t)Ai(v)

)
+
∑
i,j

∂2

∂vi∂vj

(
f(x,v, t)Dij(v)

)
,

(2.357)

where

Ai(v) =
⟨∆vi⟩
∆t

, (2.358)

Dij(v) =
⟨∆vi∆vj⟩

∆t
. (2.359)

The first term in this equation describes the change of f due to the average
change in v [5], i.e. the average force a particle feels due to collisions. It has
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the effect of a drag on the particle and thus slows it down. This force pulls
toward v = 0. This pull is balanced by the second term that describes random
and diffusive spreading in velocity space. The diffusion coefficient is given by
(assuming only one spatial dimension for a moment)

D =
⟨∆v2⟩
2∆t

∼ step size2

time step
. (2.360)

Note that the diffusion coefficient is a tensor indicating a possibly non-isotropic
behavior. The balance of drag force and diffusive spreading results in a Maxwellian
distribution (2.72) in equilibrium.

In general, the coefficients Ai and Dij incorporate the effects of Coulomb
collisions.

As is apparent, the combining the Fokker-Planck collision operator with
the Vlasov equation results in a highly complex partial differential equation.
Consequently, various approximations and simplifications have been developed
to make the Fokker-Planck equation more tractable. An example is given by
the Ornstein-Uhlenbeck approximation, which assumes a linear drag force and
constant diffusion coefficient. This leads to a simplified form of the Fokker-
Planck equation that is easier to analyze and solve.

Ornstein-Uhlenbeck approximation

Assuming the drag force coefficient to be linear in v and the diffusion to be
constant, we can write down the Ornstein-Uhlenbeck form of the Fokker-Planck
equation. In 1D it is given by(

∂f

∂t

)
c.

= ν
∂

∂v

(
vf + v2T

∂

∂v
f

)
(2.361)

where we expressed the coefficients by

A = −vν (2.362)

B = v2T ν. (2.363)
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2.6. QUESTIONS KINETIC THEORY

2.6 Questions Kinetic Theory

Vlasov equation

(2.1) Derive the Klimontovich equation from the multi-particle phase space den-
sity.

(2.2) What is the issue with the Klimontovich equation?

(2.3) Derive the Boltzmann-Vlasov equation from the Klimontovich equation.

(2.4) What does the Boltzmann equation describe?

(2.5) How does the Vlasov equation relate to the Boltzmann equation?

(2.6) What is a general property of equilibrium solutions to the Vlasov equa-
tion? How does the equilibrium solution relate to the motion of individual
particles?

(2.7) What does the Maxwell-Boltzmann distribution describe? Sketch and
discuss its properties.

(2.8) Tell me everything you know about the plasma kinetic equation (e.g. prop-
erties of equilibrium solutions, how to get plasma waves, how it is related
to the particle and fluid pictures, ...).

Plasma waves

Linear plasma waves in general

(2.9) What are the assumptions to describe linear plasma waves?

(2.10) What impact does the plasma have on electromagnetic waves?

(2.11) How are the plasma conductivity tensor, the dielectric tensor and the
refraction index related?

(2.12) Discuss the dispersion equation (derivation, result, etc.).

(2.13) What effect does the refraction index have on the wave? Discuss limiting
cases.

(2.14) What does the dispersion relation tell you? What types are there (e.g.
dispersive, linear, etc.)?

Cold plasma waves

(2.15) What are the assumptions of cold plasma waves?

(2.16) Sketch the derivation of the dispersion equation. How does the cold plasma
assumption impact the derivation?
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(2.17) Discuss the dielectric tensor (e.g. anisotropy, gyrotropic, etc.).

(2.18) How can we tell which types of plasma waves exist? How do we know
their allowed frequency range and polarization?

(2.19) What are cut-offs and resonances?

(2.20) Tell me some types of plasma waves for parallel propagation and discuss
them.

(2.21) Tell me some types of plasma waves for perpendicular propagation and
discuss them.

Warm and hot plasma waves

(2.22) Show the derivation of the electrostatic dispersion equation.

(2.23) Give the electrostatic dispersion equation and discuss the options you have
to solve it.

(2.24) What are Langmuir waves?

(2.25) Sketch the steps to derive the dispersion relation for warm Langmuir
waves.

(2.26) What is the dispersion relation of warm Langmuir waves? How does it
differ to cold plasma waves?

(2.27) What are phase and group velocity of warm Langmuir waves?

(2.28) Describe Landau damping or growth. How can we understand it physi-
cally?

(2.29) What is the difference in the dispersion relation of Langmuir waves in the
cold, warm and hot plasma limits? What are the individual assumptions?

Collisions

(2.30) How are collisions defined?

(2.31) What impact do collisions have on the plasma?

(2.32) What rules does the collision operator have to follow? Why are they
important?

(2.33) Derive the Fokker-Planck equation. What are the individual terms of the
final expression describing?

(2.34) Write down the Fokker-Planck equation. What are the terms describing?

(2.35) What is the equilibrium solution to the Fokker-Planck equation?
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From kinetic to fluid equations

(2.36) How can we derive the fluid equations from the kinetic equation? What
are the three most prominent resulting fluid equations?

(2.37) Show the derivation of the continuity equation from the Vlasov equation.
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Chapter 3

Advanced topics

3.1 Drift-kinetic theory

3.1.1 Derivation of the drift-kinetic equation

An important approximation of the kinetic equation is the drift-kinetic equation.
This form is particularly prominent in transport models[5]. To derive it, we start
with the kinetic equation in the form

∂f

∂t
+∇z · (żf) = C(f). (3.1)

Here, z = (x,p) is the 6D phase space variable and ∇z = ∂/∂z. Without colli-
sions, this equation would be a continuity equation of the particle distribution
function in phase space where ẑf is the particle flux. With the help of Hamil-
ton’s equations it is straightforward to show that the phase space flow velocity
is divergence free

∇zż = 0. (3.2)

Therefore, the kinetic equation can be written as

∂f

∂t
+ żk

∂f

∂zk
= C(f). (3.3)

Since the scalar product ensures diffeomorphism invariance, we can change the
coordinate system to the guiding-center variables w = (R, E , µ, ϑ). The mo-
menta are now given by the energy

E =
mv2

2
+ ZeΦ, (3.4)

the magnetic moment µ = mv2⊥/(2B) and the gyrophase ϑ. Using this set of
variables, we have

∂f

∂t
+ Ṙ · ∇f + Ė ∂f

∂E
+ µ̇

∂f

∂µ
+ ϑ̇

∂f

∂ϑ
= C(f). (3.5)



3.1. DRIFT-KINETIC THEORY

In a fusion plasma, the magnetic moment µ is usually conserved and the corre-
sponding term vanishes. Also, the last term on the left hand side is dominating
over all other terms since ϑ̇ = Ωc, where Ωc is the cyclotron frequency which is
large (≈ 1010-1012 Hz). The guiding center velocity term, with Ṙ = hv∥ + vd,
is of the order d−1 where δ ≡ max(ρ/LB , 1/(ΩcτB)). Here, LB and τB are the
typical gradient scale and the typical temporal scale of the magnetic field. On
the other hand, the collision term on the right hand side is proportional to ∆−1

with ∆ = ν/Ωc ≪ 1 being the ratio of the collision frequency and the gyrotron
frequency, which is small in a fusion plasma.

As mentioned, drift-kinetic theory is particularly useful for studying slow
transport phenomena. In this case, ∂t ∼ δ2ν and energy is conserved. In zeroth
order of δ and ∆, we have

∂f0
∂ϑ

= 0. (3.6)

If we average the drift-kinetic equation over the gyrophase and assume slow
dynamics, we have

v∥∇∥f0 + vd · ∇f0 = C(f0), (3.7)

which is the drift-kinetic equation used to study transport phenomena.
Note that the zeroth order distribution function f0 = f0(R) rather than

r = R+ ρ where ρ = h× v/Ωc is the Larmor vector. Hence, we can write

f(r) ≃ f0(R) ≃ f0(r)− ρ · ∇f0(r), (3.8)

which is a Taylor expansion in the Larmor radius. Note that if f0(R) is
Maxwellian, the distribution function f0(r) will differ by O(δ). In fact, the
variation from the Maxwellian given by the term −ρ · ∇f0 is what causes dia-
magnetic fluxes of particles, momentum and heat. Furthermore, the relaxation
to a Maxwellian is driven by classical cross-field transport. Since the Larmor ra-
dius is small, classical transport is weak in comparison to other transport mech-
anisms. Most importantly, neoclassical transport, introduced by non-straight
magnetic field structures, is caused by guiding-center drifts and is much larger
than classical transport.

Bounce-averaged drift-kinetic equation: If we are interested in even slower
phenomena, we could do further averaging over the parallel particle motion.
This would result in the bounce-averaged drift-kinetic equation, resulting in a
4-dim phase space. Not treated in this lecture.

3.1.2 Transport theory

Often, the subject of transport theory the radial fluxes of particles and heat.
They can be brought into the form

Γ = −n(D11A1 +D12A2), (3.9)

Q = −nT (D21A1 +D22A2). (3.10)

where A1 and A2 are thermodynamic forces.
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3.2 Gyro-kinetic theory

In drift-kinetic theory, it was assumed that the electromagnetic fields do not
change much over one gyro period. However, there are phenomena that re-
quire loosing this assumption. In particular, plasma turbulence which is the
dominating transport mechanism in magnetically confined fusion plasmas (even
larger than neoclassical transport). To describe turbulence, which is a micro-
scopic effect, the electromagnetic field variation over the gyromotion has to be
considered. The result is gyro-kinetic theory.

3.2.1 Derivation of the gyro-kinetic equation

3.3 Bernstein waves

• Magnetized plasmas, i.e. includes gyro motion

• Cyclotron damping

3.3.1 Cyclotron damping

3.4 Hamiltonian form of the Vlasov equation

Another neat way to write the Vlasov equation is in terms of Hamiltonian
mechanics. In particular, the time evolution of a quantity of a Hamiltonian
system is given by the total time derivative. For the distribution function, this
is

df

dt
=

∂f

∂t
− {f,H} , (3.11)

which is either zero (no collisions) or equal to some collision term. Here, the
bracket is the Poisson bracket defined by

{f,H} = ∂f

∂x
· ∂H
∂p
− ∂f

∂p
· ∂H
∂x

, (3.12)

where (x, p) are canonical coordinates. The Hamiltonain H appearing in the
Poisson bracket is the single particle Hamiltonian corresponding to the macro-
scopic fields. Of course, f and H in equation (3.11) corresponds to one species
σ.

3.4.1 Action-angle coordinates
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Appendix A

Useful vector identities

• BAC-CAB rule

A× (B×C) = B(A ·C)−C(A ·B) (A.1)



Appendix B

Some basics on waves

Relaxation [10]: The particle distribution function tends towards an equi-
librium solution (see section 2.2.1) due to collisions1. In an anisotropic plasma,
e.g. in the presence of a magnetic field, the relaxation times in parallel and
perpendicular direction may be different.

Thermalization [10]: Waves tend to thermalize, i.e. dissipate their energy
to the particles. The timescale depends on the plasma parameters like density,
temperature, etc. In a collisionless plasma, the timescale is longer since dis-
sipation only occurs via wave-particle interaction (discussed in section 2.3.4).
Thermalization is an important topic in the context of heating of fusion plasmas
by electromagnetic waves (electron/ion cyclotron resonance heating).

Monochromatic waves: We consider here only monochromatic waves of the
form

A(x, t) = Ãke
i(k·x−ωt). (B.1)

In this case, derivative operators take an algebraic form,

∂

∂t
= iω, (B.2)

∇ = −ik, (B.3)

where k is the wave vector indicating the direction of propagation. When the
wave number k = |k| is real, the wave propagates unattenuated with the phase
velocity

vp =
ω

k
, (B.4)

and the group velocity

vg =
∂ω

∂k
. (B.5)

1TODO: Also, without collisions, the distribution function tends towards an equilibrium
due to Boltzmann’s H-theorem (entropy considerations).



Further, the wave length is defined by λ = 2π/k. If, however, the wave number
is complex, k = a − ib, the wave propagates with the phase velocity vp = a/k
and the amplitude decreases continuously with exp(−bx) (b > 0). If k is purely
imaginary, the wave is evanescent.

Furthermore, the frequency of the wave could also be complex, ω = ωr+iωi.
As for a purely real frequency, the real part describes a usual oscillating wave.
However, the imaginary part leads to a temporally damped or growing wave,
depending on the sign of the imaginary part.

For comparison, a wave packet can be written as

A(x, t) =

∫
dωd3k Ã(k)ei(k·x−ωt). (B.6)

Linear theory [10]: Often, we assume the wave amplitude to be small com-
pared to an equilibrium, e.g.

E = E0 + δE, (B.7)

where |E0| ≫ |δE|. Then, by linearizing the governing equations, i.e. by sub-
stituting the linear form (B.7) for various quantities and neglecting terms of
O(δ2), we can simplify the problem. In particular, if we assume a wave ansatz
for the perturbation, the initial differential equations are cast into an algebraic
form.

But, wave-particle interactions are generally non-linear. Still, linear treat-
ment has a bounded region of validity due to collisions. The reasoning is the
following. Consider a travelling potential well. Particles can get trapped in this
well and cease to exchange energy with the wave on average. In this case, damp-
ing of the wave by Landau damping or cyclotron damping ceases. However, if
collisions are considered, the particles can be removed from the well before they
’thermalize’. In this case, linear theory still gives an accurate treatment. Hence,
collisions enable linear theory.
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Wave vs. Mode

Often in magnetic confinement fusion physics, there is talk about modes,
for example ballooning modes or tearing modes. But what is the
difference to plasma waves?

Waves: propagate, i.e. move through the plasma.

Modes: spatial structure that is either stationary,
growing or oscillating.

The fundamental plasma waves discussed here are naturally occurring in
plasma due to the collective behaviour. In other words, they are driven
by electromagnetic forces. Modes, like ballooning modes, are driven by
kinetica properties like the pressure gradient, or current gradient.

a”Kinetic” in this context means that it originates from the particles and their
movement.

In general, waves and modes require a driving (or restoring) force that is
hampered by an inertial property. For example, Langmuir waves or plasma
waves are oscillations of electrons around a stationary ion background. Imagine
pulling the electrons away from the ion background and let go. In this case, the
restoring force is the Coulomb force mediated by the electric field and the inertia
is provided by the electron mass. Some examples of force/inertia combinations
are shown in table B.1. In this lecture, we will only discuss waves.

Table B.1: Comparison of restoring forces and inertia for different plasma waves
and modes. TODO: Fully clarify driving forces and inertia
Wave/Mode Restoring Force Inertia
Langmuir Waves Coulomb force (electric

field)
Electron mass

Ion Acoustic Waves Electron pressure gradient Ion mass
Alfvén Waves Magnetic tension (Lorentz

force)
Plasma mass density ρ

Whistler Waves Magnetic field restoring
force 2

Electron gyromotion (cy-
clotron motion)

Ballooning Modes Plasma pressure gradient Magnetic field line tension
in plasma core

Peeling Modes Plasma pressure gradient Magnetic field line tension
at plasma edge

Kink Modes Current density gradient Magnetic tension
Tearing Modes Current density gradient

2Magnetic field restoring force is a broader term than only magnetic tension. It includes
both magnetic tension and magnetic pressure effects (if applicable).

82



Appendix C

Derivation of the
guiding-center Lagrangian

In the following, we derive the guiding-center Lagrangian where we assume
a (weakly) inhomogeneous magnetic field that is static, hence, B = B(r) =
B(r)h(r). The weak inhomogeneous criterion is given by

ρL
LB
≪ 1, (C.1)

where LB = |∇ lnB|−1 is the magnetic field length scale.
First, we transition from the particle coordinates zP = (r,v) in phase space,

to guiding-center coordinates z = (R, ϕ, v∥, v⊥). The transformation is given by

r(z) = R+ ρ(R, ϕ, v⊥), (C.2)

v(z) = v∥h(R) + v⊥n̂(R, ϕ), (C.3)

where

ρ(R, ϕ, v⊥) =
mcv⊥
eB(R)

ρ̂(R, ϕ) (C.4)

= ρL(R, v⊥)ρ̂(R, ϕ). (C.5)

It is straightforward to show

ρ̂(R, ϕ) = −∂n̂(R, ϕ)

∂ϕ
, (C.6)

n̂(R, ϕ) =
∂ρ̂(R, ϕ)

∂ϕ
. (C.7)

If the magnetic field is homogeneous, (ϕ, v∥, v⊥) are the gyro phase, the parallel
and the perpendicular velocity of the particle. In the case of a weakly inhomo-
geneous field, they still are good approximations for the particle values averaged



over one gyro-period. The important difference comes from the values which
are different if taken at the particle position or the guiding-center position R.
Note that the latter coincides with the center of the gyration only in the ho-
mogeneous case. In the weakly inhomogeneous case, it is close and thus a good
approximation.

Let us write the phase-space Lagrangian (see section D.1)

L(r, ṙ,v, v̇) =
(
mv +

e

c
A(r)

)
· r−

(m
2
v2 + eΦ(r)

)
(C.8)

in terms of the new coordinates

L(R, Ṙ, ϕ, ϕ̇, v∥, v⊥) =
(
mv∥h(R) +mv⊥n̂(R, ϕ) +

e

c
A(R+ ρ)

)
·(Ṙ+ ρ̇)

−
(m
2
(v2∥ + v2⊥) + eΦ(R+ ρ)

)
. (C.9)

So far, this is an exact Lagrangian, just written in a different system of coordi-
nates. Now, we introduce an approximation by Taylor expansion in the small
parameter of

ρL = |ρ| = mcv⊥
eB(R)

∼ ε, (C.10)

where we introduce now an ordering parameter ε which we eventually set to
unity. The gyro motion is not only small in spatial dimensions, but also fast in
temporal. Hence, it introduces a large parameter compared to frequency scales,

ωc =
eB(R)

mc
∼ ε−1. (C.11)

The potentials are now expanded as

A(R+ ρ) = A(R) + ερ · ∇A(R) +O(ε2) (C.12)

Φ(R+ ρ) = Φ(R) + ερ · ∇Φ(R) +O(ε2). (C.13)

We write the Lagrangian now with the order parameter,

L(R, Ṙ, ϕ, ϕ̇, v∥, v⊥) =
(
mv∥h(R) +mv⊥n̂(R, ϕ) +

e

c
ε−1A(R+ ερ)

)
·(Ṙ+ ρ̇)

−
(m
2
(v2∥ + v2⊥) + eΦ(R+ ερ)

)
. (C.14)

Note, the ε−1 besides the vector potential since A ∼ B ∼ ωc ∼ ε−1. Further
note that ρ̇ ≁ ερ̇, which is demonstrated by

ρ̇ =
dρ

dt

= (Ṙ · ∇)ρ+ ϕ̇∂ϕρ+ v̇⊥∂v⊥ρ (C.15)

= ε(Ṙ · ∇)ρ+ ε−1ϕ̇ερLn̂+ ε
v̇⊥
v⊥

ρ (C.16)

= ϕ̇ρLn̂+ ε
(
(Ṙ · ∇)ρ+

v̇⊥
v⊥

ρ
)
. (C.17)
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Note that the second term in the bracket might even be higher order, if the
magnetic field is varying significantly.

Let’s write expand the fields in the phase-space Lagrangian,

L(R, Ṙ, ϕ, ϕ̇, v∥, v⊥) = (C.18)(
mv∥h(R) +mv⊥n̂(R, ϕ) +

e

c
ε−1A(R) +

e

c
ρ · ∇A(R)

)
·(Ṙ+ ρ̇)

−
(m
2
(v2∥ + v2⊥) + eΦ(R) + eερ · ∇Φ(R)

)
, (C.19)

where for now we keep the ρ̇. Considering the first product to lowest order in
ε, we have(

mv∥h(R) +mv⊥n̂(R, ϕ) +
e

c
ε−1A(R) +

e

c
ρ · ∇A(R)

)
·(Ṙ+ ρ̇) (C.20)

=
(
mv∥h+mv⊥n̂+ ε−1 e

c
A+

e

c
ρ · ∇A

)
·R+mv⊥ϕ̇ρL + ε−1 e

c
A · ρ̇

+
e

c
ρ · ∇A · ρ̇+O(ε) (C.21)

where we have used the expression (C.17) for ρ̇. Thus, the Lagrangian becomes

L(R, Ṙ, ϕ, ϕ̇, v∥, v⊥) +O(ε) =
(
mv∥h+mv⊥n̂+ ε−1 e

c
A+

e

c
ρ · ∇A

)
· Ṙ

+mv⊥ϕ̇ρL + ε−1 e

c
A · ρ̇+

e

c
ρ · ∇A · ρ̇

−
(m
2
(v2∥ + v2⊥) + eΦ(R)

)
. (C.22)

Now, we exploit the fact that adding a total time derivative to the Lagrangian
does not change the equations of motion. First, consider

∇A · Ṙ = Ṙ× (∇×A) + Ṙ · ∇A
= Ṙ×B+ Ṙ · ∇A. (C.23)

which results in

ρ · ∇A · Ṙ = ρ · Ṙ×B+ ρ · Ṙ · ∇A, (C.24)

which is the last term in the first bracket in the Lagrangian. Next,

d

dt
(ρ ·A(R)) = ρ̇ ·A+ ρ · (Ṙ · ∇)A, (C.25)

and together with (C.24) we have

ρ · ∇A · Ṙ = ρ · Ṙ×B+
d

dt
(ρ ·A(R))− ρ̇ ·A. (C.26)

85



Note that the last term here cancels with the equivalent term in the Lagrangian
(second term second line in (C.22). Also, we have

e

c
ρ · (Ṙ×B) =

e

c
ρLBḂ · (h× ρ̂)

=
e

c
ρLBρ̂ · (Ṙ× h)

=
e

c
ρLBṘ · (h× ρ̂)

= −mv⊥n̂, (C.27)

and this term cancels with the second term in the first bracket in the Lagrangian.
Thus, we have

L− e

c

d

dt
(ρ ·A) + (ε) =

(
mv∥h+ ε−1 e

c
A
)
· Ṙ+mv⊥ϕ̇ρL +

e

c
(ρ · ∇)A · ρ

−
(m
2
(v2∥ + v2⊥) + eΦ

)
(C.28)

Now, we resolve the last term on the first line with another total time deriva-
tive. Specifically, with

1

2

d

dt
(ρ · ∇A · ρ) = 1

2

(
ρ̇ · ∇A · ρ+ ρ · ∇A · ρ̇

)
+

1

2
ερ · d∇A

dt
· ρ. (C.29)

Further, consider

(ρ× ρ̇) ·B = (ρ× ρ̇) · (∇×A)

= εijkρj ρ̇kεimn∂mAn

= (δjmδkn − δjnδkm)ρj ρ̇k∂mAn

= (ρ · ∇)A · ρ̇− (ρ̇ · ∇)A · ρ. (C.30)

Let’s look at the term of interest in the Lagrangian

ρ · ∇A · ρ̇ = ρ · ∇A · ρ̇− 1

2
ρ̇ · ∇A · ρ+

1

2
ρ̇ · ∇A · ρ

=
1

2

(
ρ · ∇A · ρ̇− ρ̇ · ∇A · ρ

)
+

1

2

(
ρ · ∇A · ρ̇+ ρ̇ · ∇A · ρ

)
=

1

2
(ρ× ρ̇) ·B− 1

2

d

dt
(ρ · ∇A · ρ) +O(ε). (C.31)

Again, the total time derivative does not affect the equations of motion and

(ρ× ρ̇) ·B = (ρLρ× ϕ̇ρLn̂)×B+O(ε)
= −ϕ̇ρ2LB +O(ε)

= −mcv⊥
e

ρLϕ̇+O(ε). (C.32)
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So we have

L− e

c

d

dt

(
ρ ·A− 1

2
ρ · ∇A · ρ

)
+O(ε) =(

mv∥ +
e

c
A
)
· Ṙ+

1

2
mv⊥ρLϕ̇−

(m
2
(v2∥ + v2⊥) + eΦ

)
(C.33)

And finally, we arrive at the guiding center Lagrangian,

Lgc(R, Ṙ, ϕ, ϕ̇, v∥, v⊥) =
(
mv∥h+

e

c
A
)
·Ṙ+

m2cv2⊥
2eB

ϕ̇−
(m
2
(v2∥+v2⊥)+eΦ

)
,

(C.34)

Note that there is another way of deriving this Lagrangian commonly pre-
sented in the literature. This other approach introduces a gyrophase average
which integrates out the dependency on the gyrophase.
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Appendix D

Classical Mechanics

D.1 Phase-space Lagrangian: simple harmonic
oscillator

The Hamilton function of the simple oscillator in one dimension is given by

H(q, p) =
p2

2m
+

k

2
q2. (D.1)

The corresponding phase-space Lagrangian is given by

Lph(q, q̇, p, ṗ) = pq̇ −H(q, p) (D.2)

= pq̇ −
( p2

2m
+

k

2
q2
)
. (D.3)

Here, the generalized coordinates are q and p, and the corresponding velocities
are q̇ and ṗ. Furthermore, the Euler-Lagrange equations are

d

dt

∂Lph

∂q̇
=

∂Lph

∂q
(D.4)

ṗ = −kq = −∂H

∂q
, (D.5)

and

d

dt

∂Lph

∂ṗ
=

∂Lph

∂ṗ
(D.6)

0 = q̇ − p

m
⇒ q̇ =

∂H

∂p
, (D.7)

which recovers Hamilton’s equations.
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